Suppr超能文献

蛋白质相互作用网络

Protein interaction networks.

作者信息

Pellegrini Matteo, Haynor David, Johnson Jason M

机构信息

Rosetta Inpharmatics LLC, 401 Terry Ave., Seattle, WA 98109, USA.

出版信息

Expert Rev Proteomics. 2004 Aug;1(2):239-49. doi: 10.1586/14789450.1.2.239.

Abstract

The study of protein interactions is playing an ever increasing role in our attempts to understand cells and diseases on a system-wide level. This article reviews several experimental approaches that are currently being used to measure protein-protein, protein-DNA and gene-gene interactions. These techniques have now been scaled up to produce extensive genome-wide data sets that are providing us with a first glimpse of global interaction networks. Complementing these experimental approaches, several computational methodologies to predict protein interactions are also reviewed. Existing databases that serve as repositories for protein interaction information and how such databases are used to analyze high-throughput data from a pathway perspective is also addressed. Finally, current efforts to combine multiple data types to obtain more accurate and comprehensive models of protein interactions are discussed. It is clear that the evolution of these experimental and computational approaches is rapidly changing our view of biology, and promises to provide us with an unprecedented ability to model cells and organisms at a system-wide level.

摘要

在我们从系统层面理解细胞和疾病的过程中,蛋白质相互作用的研究正发挥着越来越重要的作用。本文综述了目前用于测量蛋白质-蛋白质、蛋白质-DNA和基因-基因相互作用的几种实验方法。这些技术现已扩大规模,以生成广泛的全基因组数据集,让我们首次得以窥见全球相互作用网络。作为蛋白质相互作用信息储存库的现有数据库,以及如何从通路角度利用此类数据库分析高通量数据,也在文中进行了探讨。最后,讨论了当前为结合多种数据类型以获得更准确、更全面的蛋白质相互作用模型所做的努力。显然,这些实验和计算方法的发展正在迅速改变我们对生物学的看法,并有望为我们提供前所未有的在系统层面模拟细胞和生物体的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验