Yeh Ernest N, Stuber Matthias, McKenzie Charles A, Botnar Rene M, Leiner Tim, Ohliger Michael A, Grant Aaron K, Willig-Onwuachi Jacob D, Sodickson Daniel K
Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
Magn Reson Med. 2005 Jul;54(1):1-8. doi: 10.1002/mrm.20517.
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm.
在并行磁共振成像中使用自校准技术消除了对线圈灵敏度校准扫描的需求,并避免了校准扫描与后续加速采集之间的潜在不匹配(例如,由于患者运动)。大多数自校准笛卡尔并行成像技术的示例都需要使用修改后的k空间轨迹,这些轨迹在中心进行密集采样,而在外围进行更稀疏的采样。然而,螺旋和径向轨迹由于其中心的密集采样而具有固有的自校准特性。在不增加采集时间成本且不修改扫描协议的情况下,可以从k空间的密集采样中心区域提取体内线圈灵敏度图。这项工作证明了使用先前描述的迭代非笛卡尔灵敏度编码算法进行自校准螺旋和径向并行成像的可行性。