Suppr超能文献

一种基于增广拉格朗日的压缩感知重建方法,用于非笛卡尔磁共振成像,且在每次迭代时无需网格化和重新网格化。

An augmented Lagrangian based compressed sensing reconstruction for non-Cartesian magnetic resonance imaging without gridding and regridding at every iteration.

作者信息

Akçakaya Mehmet, Nam Seunghoon, Basha Tamer A, Kawaji Keigo, Tarokh Vahid, Nezafat Reza

机构信息

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America.

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America; Surgical Technologies, Medtronic, Inc., Littleton, Massachusetts, United States of America.

出版信息

PLoS One. 2014 Sep 12;9(9):e107107. doi: 10.1371/journal.pone.0107107. eCollection 2014.

Abstract

BACKGROUND

Non-Cartesian trajectories are used in a variety of fast imaging applications, due to the incoherent image domain artifacts they create when undersampled. While the gridding technique is commonly utilized for reconstruction, the incoherent artifacts may be further removed using compressed sensing (CS). CS reconstruction is typically done using conjugate-gradient (CG) type algorithms, which require gridding and regridding to be performed at every iteration. This leads to a large computational overhead that hinders its applicability.

METHODS

We sought to develop an alternative method for CS reconstruction that only requires two gridding and one regridding operation in total, irrespective of the number of iterations. This proposed technique is evaluated on phantom images and whole-heart coronary MRI acquired using 3D radial trajectories, and compared to conventional CS reconstruction using CG algorithms in terms of quantitative vessel sharpness, vessel length, computation time, and convergence rate.

RESULTS

Both CS reconstructions result in similar vessel length (P = 0.30) and vessel sharpness (P = 0.62). The per-iteration complexity of the proposed technique is approximately 3-fold lower than the conventional CS reconstruction (17.55 vs. 52.48 seconds in C++). Furthermore, for in-vivo datasets, the convergence rate of the proposed technique is faster (60±13 vs. 455±320 iterations) leading to a ∼23-fold reduction in reconstruction time.

CONCLUSIONS

The proposed reconstruction provides images of similar quality to the conventional CS technique in terms of removing artifacts, but at a much lower computational complexity.

摘要

背景

非笛卡尔轨迹用于各种快速成像应用中,因为在欠采样时它们会产生非相干图像域伪影。虽然网格化技术通常用于重建,但使用压缩感知(CS)可进一步去除非相干伪影。CS重建通常使用共轭梯度(CG)类型算法进行,该算法在每次迭代时都需要进行网格化和重新网格化。这导致计算开销很大,阻碍了其应用。

方法

我们试图开发一种用于CS重建的替代方法,该方法总共只需要两次网格化和一次重新网格化操作,而与迭代次数无关。在使用3D径向轨迹采集的体模图像和全心冠状动脉MRI上对该提议技术进行评估,并在定量血管清晰度、血管长度、计算时间和收敛速度方面与使用CG算法的传统CS重建进行比较。

结果

两种CS重建方法得到的血管长度(P = 0.30)和血管清晰度(P = 0.62)相似。所提议技术的每次迭代复杂度比传统CS重建低约3倍(C++中分别为17.55秒和52.48秒)。此外,对于体内数据集,所提议技术的收敛速度更快(60±13次迭代对455±320次迭代),导致重建时间减少约23倍。

结论

所提议的重建方法在去除伪影方面提供了与传统CS技术质量相似的图像,但计算复杂度要低得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e839/4162575/7dfb9d3a4d13/pone.0107107.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验