Suppr超能文献

利用几何推导的密度补偿加速欠采样径向 k 空间数据的压缩感知重建。

Accelerating compressed sensing reconstruction of subsampled radial k-space data using geometrically-derived density compensation.

机构信息

Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America.

Department of Computer Science, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States of America.

出版信息

Phys Med Biol. 2021 Oct 21;66(21). doi: 10.1088/1361-6560/ac2c9d.

Abstract

To accelerate compressed sensing (CS) reconstruction of subsampled radial k-space data using a geometrically-derived density compensation function (gDCF) without significant loss in image quality.We developed a theoretical framework to calculate a gDCF based on Nyquist distance along the radial and circumferential directions of a discrete polar coordinate system. Our gDCF was compared against standard DCF (e.g. ramp filter) and another commonly used DCF (modified Shepp-Logan (SL) filter). The resulting image quality produced by each DCF was quantified using normalized root-mean-square-error (NRMSE), blur metric (1 = blurriest; 0 = sharpest), and structural similarity index (SSIM; 1 = perfect match; 0 = no match) compared with the reference. For filtered backprojection (FBP) of phantom data obtained at the Nyquist sampling rate, Cartesian k-space sampling was used as the reference. For CS reconstruction of subsampled cardiac magnetic resonance imaging datasets (real-time cardiac cine data with 11 projections per frame, = 20 patients; cardiac perfusion data with 30 projections per frame, = 19 patients), CS reconstruction without DCF was used as the reference.The NRMSE, SSIM, and blur metrics of the phantom data were good for all DCFs, confirming that our gDCF produces uniform densities at the upper limit (Nyquist). For CS reconstruction of subsampled real-time cine and cardiac perfusion datasets, the image quality metrics (SSIM, NRMSE) were significantly ( < 0.05) higher for our gDCF than other DCFs, and the reconstruction time was significantly ( < 0.05) faster for our gDCF (reference) than no DCF (11.9%-52.9% slower), standard DCF (23.9%-57.6% slower), and modified SL filter (13.5%-34.8% slower).The proposed gDCF accelerates CS reconstruction of subsampled radial k-space data without significant loss in image quality compared with no DCF as the reference.

摘要

为了在不显著降低图像质量的情况下,使用基于几何的密度补偿函数(gDCF)加速对欠采样径向 k 空间数据的压缩感知(CS)重建。我们开发了一种理论框架,用于根据离散极坐标系的径向和周向的奈奎斯特距离计算 gDCF。我们将 gDCF 与标准 DCF(例如斜坡滤波器)和另一种常用的 DCF(修改后的 Shepp-Logan(SL)滤波器)进行了比较。使用归一化均方根误差(NRMSE)、模糊度度量(1=最模糊;0=最清晰)和结构相似性指数(SSIM;1=完美匹配;0=不匹配)对每个 DCF 生成的图像质量与参考图像进行定量比较。对于在奈奎斯特采样率下获得的幻影数据的滤波反投影(FBP),笛卡尔 k 空间采样被用作参考。对于子采样的心脏磁共振成像数据集(每帧 11 个投影的实时心脏电影数据,n=20 名患者;每帧 30 个投影的心脏灌注数据,n=19 名患者)的 CS 重建,我们使用没有 DCF 的 CS 重建作为参考。幻影数据的 NRMSE、SSIM 和模糊度度量对于所有 DCF 都很好,这证实了我们的 gDCF 在上限(奈奎斯特)处产生均匀的密度。对于子采样的实时电影和心脏灌注数据集的 CS 重建,与其他 DCF 相比,我们的 gDCF 的图像质量度量(SSIM、NRMSE)显著更高(p<0.05),并且与没有 DCF(慢 11.9%-52.9%)、标准 DCF(慢 23.9%-57.6%)和修改后的 SL 滤波器(慢 13.5%-34.8%)相比,我们的 gDCF 的重建时间显著更快(p<0.05)。与以无 DCF 为参考相比,所提出的 gDCF 可加速欠采样径向 k 空间数据的 CS 重建,而不会显著降低图像质量。

相似文献

3
Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net.
NMR Biomed. 2020 May;33(5):e4239. doi: 10.1002/nbm.4239. Epub 2020 Jan 14.
7
Phase-regularized and displacement-regularized compressed sensing for fast magnetic resonance elastography.
NMR Biomed. 2023 Jul;36(7):e4899. doi: 10.1002/nbm.4899. Epub 2023 Feb 1.
9
Pseudo-Polar Fourier Transform-Based Compressed Sensing MRI.
IEEE Trans Biomed Eng. 2017 Apr;64(4):816-825. doi: 10.1109/TBME.2016.2578930. Epub 2016 Jun 9.
10
Real-time cardiac MRI with radial acquisition and k-space variant reduced-FOV reconstruction.
Magn Reson Imaging. 2018 Nov;53:98-104. doi: 10.1016/j.mri.2018.07.008. Epub 2018 Jul 20.

本文引用的文献

1
Accelerating Non-Cartesian MRI Reconstruction Convergence Using k-Space Preconditioning.
IEEE Trans Med Imaging. 2020 May;39(5):1646-1654. doi: 10.1109/TMI.2019.2954121. Epub 2019 Nov 19.
2
Simple auto-calibrated gradient delay estimation from few spokes using Radial Intersections (RING).
Magn Reson Med. 2019 Mar;81(3):1898-1906. doi: 10.1002/mrm.27506. Epub 2018 Nov 4.
4
Rapid compressed sensing reconstruction of 3D non-Cartesian MRI.
Magn Reson Med. 2018 May;79(5):2685-2692. doi: 10.1002/mrm.26928. Epub 2017 Sep 23.
7
State of the Art: Iterative CT Reconstruction Techniques.
Radiology. 2015 Aug;276(2):339-57. doi: 10.1148/radiol.2015132766.
8
Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes.
Magn Reson Med. 2016 May;75(5):1901-8. doi: 10.1002/mrm.25696. Epub 2015 Jun 22.
9
Revisit of the Ramp Filter.
IEEE Trans Nucl Sci. 2015 Feb;62(1):131-136. doi: 10.1109/TNS.2014.2363776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验