Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.
Magn Reson Med. 2018 May;79(5):2685-2692. doi: 10.1002/mrm.26928. Epub 2017 Sep 23.
Conventional non-Cartesian compressed sensing requires multiple nonuniform Fourier transforms every iteration, which is computationally expensive. Accordingly, time-consuming reconstructions have slowed the adoption of undersampled 3D non-Cartesian acquisitions into clinical protocols. In this work we investigate several approaches to minimize reconstruction times without sacrificing accuracy.
The reconstruction problem can be reformatted to exploit the Toeplitz structure of matrices that are evaluated every iteration, but it requires larger oversampling than what is strictly required by nonuniform Fourier transforms. Accordingly, we investigate relative speeds of the two approaches for various nonuniform Fourier transform kernel sizes and oversampling for both GPU and CPU implementations. Second, we introduce a method to minimize matrix sizes by estimating the image support. Finally, density compensation weights have been used as a preconditioning matrix to improve convergence, but this increases noise. We propose a more general approach to preconditioning that allows a trade-off between accuracy and convergence speed.
When using a GPU, the Toeplitz approach was faster for all practical parameters. Second, it was found that properly accounting for image support can prevent aliasing errors with minimal impact on reconstruction time. Third, the proposed preconditioning scheme improved convergence rates by an order of magnitude with negligible impact on noise.
With the proposed methods, 3D non-Cartesian compressed sensing with clinically relevant reconstruction times (<2 min) is feasible using practical computer resources. Magn Reson Med 79:2685-2692, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
传统的非笛卡尔压缩感知需要每迭代多次进行非均匀傅里叶变换,这在计算上是很昂贵的。因此,耗时的重建过程减缓了欠采样三维非笛卡尔采集在临床协议中的采用。在这项工作中,我们研究了几种方法来最小化重建时间,而不牺牲准确性。
可以重新格式化重建问题,以利用每次迭代评估的矩阵的 Toeplitz 结构,但这需要比非均匀傅里叶变换严格要求的更大的过采样。因此,我们研究了两种方法对于各种非均匀傅里叶变换核大小和 GPU 和 CPU 实现的过采样的相对速度。其次,我们引入了一种通过估计图像支撑来最小化矩阵大小的方法。最后,密度补偿权重已被用作预处理矩阵以提高收敛速度,但这会增加噪声。我们提出了一种更通用的预处理方法,可以在准确性和收敛速度之间进行权衡。
使用 GPU 时,对于所有实际参数,Toeplitz 方法都更快。其次,发现正确考虑图像支撑可以防止混叠误差,而对重建时间的影响最小。第三,所提出的预处理方案将收敛速度提高了一个数量级,而对噪声的影响可以忽略不计。
使用所提出的方法,可以使用实际的计算机资源实现具有临床相关重建时间(<2 分钟)的三维非笛卡尔压缩感知。磁共振医学 79:2685-2692, 2018。©2017 国际磁共振学会。