Michaux J R, Hardy O J, Justy F, Fournier P, Kranz A, Cabria M, Davison A, Rosoux R, Libois R
Unité de recherches zoogéographiques, Institut Botanique (Bat. B-22), Université de Liège, 4000 Liège (Sart Tilman), Belgium.
Mol Ecol. 2005 Jul;14(8):2373-88. doi: 10.1111/j.1365-294X.2005.02597.x.
In species of great conservation concern, special attention must be paid to their phylogeography, in particular the origin of animals for captive breeding and reintroduction. The endangered European mink lives now in at least three well-separated populations in northeast, southeast and west Europe. Our aim is to assess the genetic structure of these populations to identify 'distinct population segments' (DPS) and advise captive breeding programmes. First, the mtDNA control region was completely sequenced in 176 minks and 10 polecats. The analysis revealed that the western population is characterized by a single mtDNA haplotype that is closely related to those in eastern regions but nevertheless, not found there to date. The northeast European animals are much more variable (pi = 0.012, h = 0.939), with the southeast samples intermediate (pi = 0.0012, h = 0.469). Second, 155 European mink were genotyped using six microsatellites. The latter display the same trends of genetic diversity among regions as mtDNA [gene diversity and allelic richness highest in northeast Europe (H(E) = 0.539, R(S) = 3.76), lowest in west Europe (H(E) = 0.379, R(S) = 2.12)], and provide evidences that the southeast and possibly the west populations have undergone a recent bottleneck. Our results indicate that the western population derives from a few animals which recently colonized this region, possibly after a human introduction. Microsatellite data also reveal that isolation by distance occurs in the western population, causing some inbreeding because related individuals mate. As genetic data indicate that the three populations have not undergone independent evolutionary histories for long (no phylogeographical structure), they should not be considered as distinct DPS. In conclusion, the captive breeding programme should use animals from different parts of the species' present distribution area.
对于具有重大保护意义的物种,必须特别关注其系统地理学,尤其是圈养繁殖和重新引入的动物的来源。濒危的欧洲水貂目前生活在欧洲东北部、东南部和西部至少三个相互隔离的种群中。我们的目标是评估这些种群的遗传结构,以识别“独特种群段”(DPS)并为圈养繁殖计划提供建议。首先,对176只水貂和10只鸡貂的线粒体DNA控制区进行了全序列测定。分析表明,西部种群的特征是单一的线粒体DNA单倍型,它与东部地区的单倍型密切相关,但迄今为止在东部地区尚未发现。欧洲东北部的动物变异更大(π = 0.012,h = 0.939),东南部样本处于中间水平(π = 0.0012,h = 0.469)。其次,使用六个微卫星对155只欧洲水貂进行了基因分型。后者在各地区之间显示出与线粒体DNA相同的遗传多样性趋势[欧洲东北部的基因多样性和等位基因丰富度最高(H(E)=0.539,R(S)=3.76),欧洲西部最低(H(E)=0.379,R(S)=2.12)],并提供证据表明东南部以及可能的西部种群最近经历了瓶颈效应。我们的结果表明,西部种群源自最近定殖于该地区的少数动物,可能是在人类引入之后。微卫星数据还显示,西部种群中存在距离隔离现象,由于亲缘个体交配而导致了一些近亲繁殖。由于遗传数据表明这三个种群长期以来没有经历独立的进化历史(没有系统地理结构),因此不应将它们视为独特的DPS。总之,圈养繁殖计划应使用来自该物种当前分布区域不同地区的动物。