Suppr超能文献

一种使用离散自动机的逼真虚拟细胞膜。

A life-like virtual cell membrane using discrete automata.

作者信息

Broderick Gordon, Ru'aini Melania, Chan Eugene, Ellison Michael J

机构信息

Project CyberCell, Institute for Biomolecular Design, 3-67, Medical Sciences Bldg, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7.

出版信息

In Silico Biol. 2005;5(2):163-78.

Abstract

A framework is presented that captures the discrete and probabilistic nature of molecular transport and reaction kinetics found in a living cell as well as formally representing the spatial distribution of these phenomena. This particle or agent-based approach is computationally robust and complements established methods. Namely it provides a higher level of spatial resolution than formulations based on ordinary differential equations (ODE) while offering significant advantages in computational efficiency over molecular dynamics (MD). Using this framework, a model cell membrane has been constructed with discrete particle agents that respond to local component interactions that resemble flocking or herding behavioural cues in animals. Results from simulation experiments are presented where this model cell exhibits many of the characteristic behaviours associated with its biological counterpart such as lateral diffusion, response to osmotic pressure gradients, membrane growth and cell division. Lateral diffusion rates and estimates for the membrane modulus of elasticity derived from these simple experiments fall well within a biologically relevant range of values. More importantly, these estimates were obtained by applying a simple qualitative tuning of the model membrane. Membrane growth was simulated by injecting precursor molecules into the proto-cell at different rates and produced a variety of morphologies ranging from a single large cell to a cluster of cells. The computational scalability of this methodology has been tested and results from benchmarking experiments indicate that real-time simulation of a complete bacterial cell will be possible within 10 years.

摘要

本文提出了一个框架,该框架捕捉了活细胞中分子运输和反应动力学的离散性和概率性质,并正式表示了这些现象的空间分布。这种基于粒子或智能体的方法在计算上具有鲁棒性,是对现有方法的补充。具体而言,与基于常微分方程(ODE)的公式相比,它提供了更高的空间分辨率,同时在计算效率上比分子动力学(MD)具有显著优势。使用这个框架,构建了一个具有离散粒子智能体的模型细胞膜,这些智能体对类似于动物群体行为线索的局部成分相互作用做出反应。给出了模拟实验的结果,在这些实验中,这个模型细胞展现出了许多与其生物学对应物相关的特征行为,如横向扩散、对渗透压梯度的响应、膜生长和细胞分裂。从这些简单实验得出的横向扩散速率和膜弹性模量估计值完全落在生物学相关的值范围内。更重要的是,这些估计值是通过对模型膜进行简单的定性调整获得的。通过以不同速率将前体分子注入原始细胞来模拟膜生长,并产生了从单个大细胞到细胞簇的各种形态。已经测试了该方法的计算可扩展性,基准实验结果表明,在10年内对完整细菌细胞进行实时模拟将成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验