Bernaschi Massimo, Castiglione Filippo, Ferranti Alessandra, Gavrila Caius, Tinti Michele, Cesareni Gianni
Istituto per le Applicazioni del Calcolo M. Picone, CNR, V,le del Policlinico 137, Rome, Italy.
BMC Bioinformatics. 2007 Mar 8;8 Suppl 1(Suppl 1):S4. doi: 10.1186/1471-2105-8-S1-S4.
Protein interactions support cell organization and mediate its response to any specific stimulus. Recent technological advances have produced large data-sets that aim at describing the cell interactome. These data are usually presented as graphs where proteins (nodes) are linked by edges to their experimentally determined partners. This representation reveals that protein-protein interaction (PPI) networks, like other kinds of complex networks, are not randomly organized and display properties that are typical of "hierarchical" networks, combining modularity and local clustering to scale free topology. However informative, this representation is static and provides no clue about the dynamic nature of protein interactions inside the cell.
To fill this methodological gap, we designed and implemented a computer model that captures the discrete and stochastic nature of protein interactions. In ProtNet, our simplified model, the intracellular space is mapped onto either a two-dimensional or a three-dimensional lattice with each lattice site having a linear size (5 nm) comparable to the diameter of an average globular protein. The protein filled lattice has an occupancy (e.g. 20%) compatible with the estimated crowding of proteins in the cell cytoplasm. Proteins or protein complexes are free to translate and rotate on the lattice that represents a sort of naïve unstructured cell (devoid of compartments). At each time step, molecular entities (proteins or complexes) that happen to be in neighboring cells may interact and form larger complexes or dissociate depending on the interaction rules defined in an experimental protein interaction network. This whole procedure can be seen as a sort of "discrete molecular dynamics" applied to interacting proteins in a cell. We have tested our model by performing different simulations using as interaction rules those derived from an experimental interactome of Saccharomyces cerevisiae (1378 nodes, 2491 edges) and we have compared the dynamics of complex formation in a two and a three dimensional lattice model.
ProtNet is a cellular automaton model, where each protein molecule or complex is explicitly represented and where simple interaction rules are applied to populations of discrete particles. This tool can be used to simulate the dynamics of protein interactions in the cell.
蛋白质相互作用维持细胞组织并介导其对任何特定刺激的反应。最近的技术进步产生了旨在描述细胞相互作用组的大型数据集。这些数据通常以图表形式呈现,其中蛋白质(节点)通过边与其经实验确定的相互作用伙伴相连。这种表示方式表明,蛋白质 - 蛋白质相互作用(PPI)网络与其他类型的复杂网络一样,并非随机组织,而是呈现出“层次化”网络的典型特性,将模块化和局部聚类与无标度拓扑结构相结合。然而,这种表示方式是静态的,无法提供关于细胞内蛋白质相互作用动态性质的线索。
为填补这一方法学空白,我们设计并实现了一个计算机模型,该模型捕捉了蛋白质相互作用的离散和随机性质。在我们的简化模型ProtNet中,细胞内空间被映射到二维或三维晶格上,每个晶格位点的线性尺寸(5纳米)与平均球状蛋白质的直径相当。填充有蛋白质的晶格占有率(例如20%)与细胞质中蛋白质的估计拥挤程度相符。蛋白质或蛋白质复合物可在代表一种简单无结构细胞(无区室)的晶格上自由平移和旋转。在每个时间步,恰好位于相邻晶格位点的分子实体(蛋白质或复合物)可能根据实验性蛋白质相互作用网络中定义的相互作用规则相互作用,形成更大的复合物或解离。整个过程可视为一种应用于细胞内相互作用蛋白质的“离散分子动力学”。我们使用源自酿酒酵母实验性相互作用组(1378个节点,2491条边)的相互作用规则进行了不同模拟,测试了我们的模型,并比较了二维和三维晶格模型中复合物形成的动力学。
ProtNet是一种细胞自动机模型,其中每个蛋白质分子或复合物都有明确表示,并且简单的相互作用规则应用于离散粒子群体。该工具可用于模拟细胞内蛋白质相互作用的动力学。