Suppr超能文献

影响雅库布果蝇和桑托梅果蝇色素沉着差异的数量性状基因座。

Quantitative trait loci affecting the difference in pigmentation between Drosophila yakuba and D. santomea.

作者信息

Carbone Mary Anna, Llopart Ana, deAngelis Matthew, Coyne Jerry A, Mackay Trudy F C

机构信息

Department of Genetics, North Carolina State University, Raleigh 27695, USA.

出版信息

Genetics. 2005 Sep;171(1):211-25. doi: 10.1534/genetics.105.044412. Epub 2005 Jun 21.

Abstract

Using quantitative trait locus (QTL) mapping, we studied the genetic basis of the difference in pigmentation between two sister species of Drosophila: Drosophila yakuba, which, like other members of the D. melanogaster subgroup, shows heavy black pigmentation on the abdomen of males and females, and D. santomea, an endemic to the African island of São Tomé, which has virtually no pigmentation. Here we mapped four QTL with large effects on this interspecific difference in pigmentation: two on the X chromosome and one each on the second and third chromosomes. The same four QTL were detected in male hybrids in the backcrosses to both D. santomea and D. yakuba and in the female D. yakuba backcross hybrids. All four QTL exhibited strong epistatic interactions in male backcross hybrids, but only one pair of QTL interacted in females from the backcross to D. yabuka. All QTL from each species affected pigmentation in the same direction, consistent with adaptive evolution driven by directional natural selection. The regions delimited by the QTL included many positional candidate loci in the pigmentation pathway, including genes affecting catecholamine biosynthesis, melanization of the cuticle, and many additional pleiotropic effects.

摘要

我们利用数量性状基因座(QTL)定位技术,研究了果蝇两个姐妹物种之间色素沉着差异的遗传基础:雅库布果蝇(Drosophila yakuba),与黑腹果蝇亚组的其他成员一样,雌雄果蝇腹部均有浓重的黑色色素沉着;以及圣多美果蝇(D. santomea),一种非洲圣多美岛的特有物种,几乎没有色素沉着。在此,我们定位了四个对这种种间色素沉着差异有重大影响的QTL:两个位于X染色体上,第二和第三条染色体上各有一个。在与圣多美果蝇和雅库布果蝇的回交雄性杂种以及雌性雅库布果蝇回交杂种中均检测到相同的四个QTL。在雄性回交杂种中,所有四个QTL均表现出强烈的上位性相互作用,但在与雅库布果蝇回交的雌性中,只有一对QTL相互作用。每个物种的所有QTL均以相同方向影响色素沉着,这与定向自然选择驱动的适应性进化一致。由QTL界定的区域包括色素沉着途径中的许多位置候选基因座,包括影响儿茶酚胺生物合成、表皮黑化以及许多其他多效性效应的基因。

相似文献

1
Quantitative trait loci affecting the difference in pigmentation between Drosophila yakuba and D. santomea.
Genetics. 2005 Sep;171(1):211-25. doi: 10.1534/genetics.105.044412. Epub 2005 Jun 21.
2
3
Genetics of a difference in pigmentation between Drosophila yakuba and Drosophila santomea.
Evolution. 2002 Nov;56(11):2262-77. doi: 10.1111/j.0014-3820.2002.tb00150.x.
4
The genetic basis of prezygotic reproductive isolation between Drosophila santomea and D. yakuba due to mating preference.
Genetics. 2006 May;173(1):215-23. doi: 10.1534/genetics.105.052993. Epub 2006 Mar 1.
8
Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea.
Genetics. 2005 Sep;171(1):197-210. doi: 10.1534/genetics.104.033597. Epub 2005 Jun 18.
9
Sexual isolation between two sibling species with overlapping ranges: Drosophila santomea and Drosophila yakuba.
Evolution. 2002 Dec;56(12):2424-34. doi: 10.1111/j.0014-3820.2002.tb00168.x.

引用本文的文献

1
Evolution of assortative mating following selective introgression of pigmentation genes between two species.
Ecol Evol. 2022 Apr 13;12(4):e8821. doi: 10.1002/ece3.8821. eCollection 2022 Apr.
2
Many ways to make darker flies: Intra- and interspecific variation in body pigmentation components.
Ecol Evol. 2021 May 25;11(12):8136-8155. doi: 10.1002/ece3.7646. eCollection 2021 Jun.
3
Rapid and Predictable Evolution of Admixed Populations Between Two Species Pairs.
Genetics. 2020 Jan;214(1):211-230. doi: 10.1534/genetics.119.302685. Epub 2019 Nov 25.
4
Changes throughout a Genetic Network Mask the Contribution of Hox Gene Evolution.
Curr Biol. 2019 Jul 8;29(13):2157-2166.e6. doi: 10.1016/j.cub.2019.05.074. Epub 2019 Jun 27.
5
Fine scale mapping of genomic introgressions within the Drosophila yakuba clade.
PLoS Genet. 2017 Sep 5;13(9):e1006971. doi: 10.1371/journal.pgen.1006971. eCollection 2017 Sep.
6
Quantifying Abdominal Pigmentation in Drosophila melanogaster.
J Vis Exp. 2017 Jun 1(124):55732. doi: 10.3791/55732.
7
Genetic and Transgenic Reagents for , , , , and .
G3 (Bethesda). 2017 Apr 3;7(4):1339-1347. doi: 10.1534/g3.116.038885.
8
The Genetic Basis of Pigmentation Differences Within and Between Drosophila Species.
Curr Top Dev Biol. 2016;119:27-61. doi: 10.1016/bs.ctdb.2016.03.004. Epub 2016 Apr 25.
9
Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.
Annu Rev Genomics Hum Genet. 2015;16:103-31. doi: 10.1146/annurev-genom-091212-153423. Epub 2015 May 20.
10
Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster.
PLoS Genet. 2015 May 1;11(5):e1005163. doi: 10.1371/journal.pgen.1005163. eCollection 2015 May.

本文引用的文献

1
Thoracic trident pigmentation in Drosophila melanogaster: Differentiation of geographical populations.
Genet Sel Evol (1983). 1985;17(2):211-24. doi: 10.1186/1297-9686-17-2-211.
2
The genetics of adaptation: a reassessment.
Am Nat. 1992 Nov;140(5):725-42. doi: 10.1086/285437.
3
Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea.
Genetics. 2005 Sep;171(1):197-210. doi: 10.1534/genetics.104.033597. Epub 2005 Jun 18.
6
FlyBase: genes and gene models.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D390-5. doi: 10.1093/nar/gki046.
7
D. S. Falconer and Introduction to quantitative genetics.
Genetics. 2004 Aug;167(4):1529-36. doi: 10.1093/genetics/167.4.1529.
8
Evolution in black and white: genetic control of pigment patterns in Drosophila.
Trends Genet. 2003 Sep;19(9):495-504. doi: 10.1016/S0168-9525(03)00194-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验