Suppr超能文献

定量分析黑腹果蝇腹部色素沉着

Quantifying Abdominal Pigmentation in Drosophila melanogaster.

作者信息

Saleh Ziabari Omid, Shingleton Alexander W

机构信息

Department of Biology, Lake Forest College.

Department of Biology, Lake Forest College;

出版信息

J Vis Exp. 2017 Jun 1(124):55732. doi: 10.3791/55732.

Abstract

Pigmentation is a morphologically simple but highly variable trait that often has adaptive significance. It has served extensively as a model for understanding the development and evolution of morphological phenotypes. Abdominal pigmentation in Drosophila melanogaster has been particularly useful, allowing researchers to identify the loci that underlie inter- and intraspecific variations in morphology. Hitherto, however, D. melanogaster abdominal pigmentation has been largely assayed qualitatively, through scoring, rather than quantitatively, which limits the forms of statistical analysis that can be applied to pigmentation data. This work describes a new methodology that allows for the quantification of various aspects of the abdominal pigmentation pattern of adult D. melanogaster. The protocol includes specimen mounting, image capture, data extraction, and analysis. All the software used for image capture and analysis feature macros written for open-source image analysis. The advantage of this approach is the ability to precisely measure pigmentation traits using a methodology that is highly reproducible across different imaging systems. While the technique has been used to measure variation in the tergal pigmentation patterns of adult D. melanogaster, the methodology is flexible and broadly applicable to pigmentation patterns in myriad different organisms.

摘要

色素沉着是一种形态上简单但高度可变的性状,通常具有适应性意义。它已广泛用作理解形态表型的发育和进化的模型。黑腹果蝇的腹部色素沉着特别有用,使研究人员能够确定形态种间和种内变异的基础基因座。然而,迄今为止,黑腹果蝇的腹部色素沉着主要通过评分进行定性分析,而非定量分析,这限制了可应用于色素沉着数据的统计分析形式。这项工作描述了一种新方法,可对成年黑腹果蝇腹部色素沉着模式的各个方面进行量化。该方案包括标本固定、图像采集、数据提取和分析。所有用于图像采集和分析的软件都有针对开源图像分析编写的宏。这种方法的优点是能够使用在不同成像系统中高度可重复的方法精确测量色素沉着特征。虽然该技术已用于测量成年黑腹果蝇背板色素沉着模式的变异,但该方法具有灵活性,广泛适用于无数不同生物体的色素沉着模式。

相似文献

1
Quantifying Abdominal Pigmentation in Drosophila melanogaster.
J Vis Exp. 2017 Jun 1(124):55732. doi: 10.3791/55732.
2
Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster.
PLoS Genet. 2015 May 1;11(5):e1005163. doi: 10.1371/journal.pgen.1005163. eCollection 2015 May.
4
A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.
PLoS Genet. 2013 Jun;9(6):e1003534. doi: 10.1371/journal.pgen.1003534. Epub 2013 Jun 6.
5
Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster.
PLoS Genet. 2016 Aug 10;12(8):e1006218. doi: 10.1371/journal.pgen.1006218. eCollection 2016 Aug.
6
Genetic basis of natural variation in body pigmentation in Drosophila melanogaster.
Fly (Austin). 2015;9(2):75-81. doi: 10.1080/19336934.2015.1102807.
7
A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation.
Dev Biol. 2014 Jan 15;385(2):417-32. doi: 10.1016/j.ydbio.2013.11.013. Epub 2013 Nov 20.
9
The genetic basis of adaptive pigmentation variation in Drosophila melanogaster.
Mol Ecol. 2007 Jul;16(14):2844-51. doi: 10.1111/j.1365-294X.2007.03324.x.

引用本文的文献

1
Quantifying Abdominal Coloration of Worker Honey Bees.
Insects. 2024 Mar 22;15(4):213. doi: 10.3390/insects15040213.
2
Many ways to make darker flies: Intra- and interspecific variation in body pigmentation components.
Ecol Evol. 2021 May 25;11(12):8136-8155. doi: 10.1002/ece3.7646. eCollection 2021 Jun.

本文引用的文献

1
Sensitivity of Allelic Divergence to Genomic Position: Lessons from the Drosophila tan Gene.
G3 (Bethesda). 2016 Sep 8;6(9):2955-62. doi: 10.1534/g3.116.032029.
2
Interpreting melanin-based coloration through deep time: a critical review.
Proc Biol Sci. 2015 Aug 22;282(1813):20150614. doi: 10.1098/rspb.2015.0614.
3
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry.
Genetics. 2015 May;200(1):1-19. doi: 10.1534/genetics.114.172387.
4
Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster.
PLoS Genet. 2015 May 1;11(5):e1005163. doi: 10.1371/journal.pgen.1005163. eCollection 2015 May.
5
Gene regulation networks generate diverse pigmentation patterns in plants.
Plant Signal Behav. 2014;9(9):e29526. doi: 10.4161/psb.29526.
6
Advanced methods of microscope control using μManager software.
J Biol Methods. 2014;1(2). doi: 10.14440/jbm.2014.36.
7
Origin, development, and evolution of butterfly eyespots.
Annu Rev Entomol. 2015 Jan 7;60:253-71. doi: 10.1146/annurev-ento-010814-020942. Epub 2014 Oct 17.
9
Regulation of cuticle pigmentation in drosophila by the nutrient sensing insulin and TOR signaling pathways.
Dev Dyn. 2014 Mar;243(3):393-401. doi: 10.1002/dvdy.24080. Epub 2013 Nov 7.
10
The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of Drosophila.
Evolution. 2013 Aug;67(8):2451-60. doi: 10.1111/evo.12122. Epub 2013 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验