Foster Glen E, McKenzie Donald C, Milsom William K, Sheel A William
School of Human Kinetics, University of British Columbia, Vancouver, BC, Canada.
J Physiol. 2005 Sep 1;567(Pt 2):689-99. doi: 10.1113/jphysiol.2005.091462. Epub 2005 Jun 23.
We determined the ventilatory, cardiovascular and cerebral tissue oxygen response to two protocols of normobaric, isocapnic, intermittent hypoxia. Subjects (n = 18, male) were randomly assigned to short-duration intermittent hypoxia (SDIH, 12% O2 separated by 5 min of normoxia for 1 h) or long-duration intermittent hypoxia (LDIH, 30 min of 12% O2). Both groups had 10 exposures over a 12 day period. The hypoxic ventilatory response (HVR) was measured before each daily intermittent hypoxia exposure on days 1, 3, 5, 8, 10 and 12. The HVR was measured again 3 and 5 days after the end of intermittent hypoxia. During all procedures, ventilation, blood pressure, heart rate, arterial oxyhaemoglobin saturation and cerebral tissue oxygen saturation were measured. The HVR increased throughout intermittent hypoxia exposure regardless of protocol, and returned to baseline by day 17 (day 1, 0.84 +/- 0.50; day 12, 1.20 +/- 1.01; day 17, 0.95 +/- 0.58 l min(-1) %S(aO2)(-1); P < 0.01). The change in systolic blood pressure sensitivity (r = +0.68; P < 0.05) and the change in diastolic blood pressure sensitivity (r = +0.73; P < 0.05) were related to the change in HVR, while the change in heart rate sensitivity was not (r = +0.32; NS). The change in cerebral tissue oxygen saturation sensitivity to hypoxia was less on day 12, and returned to baseline by day 17 (day 1, -0.51 +/- 0.13; day 12, -0.64 +/- 0.18; day 17, -0.51 +/- 0.13; P < 0.001). Acute exposure to SDIH increased mean arterial pressure (+5 mmHg; P < 0.01), but LDIH did not (P > 0.05). SDIH and LDIH had similar effects on the ventilatory and cardiovascular response to acute progressive hypoxia and hindered cerebral oxygenation. Our findings indicate that the vascular processes required to control blood flow and oxygen supply to cerebral tissue in a healthy human are hindered following exposure to 12 days of isocapnic intermittent hypoxia.
我们测定了在两种常压、等碳酸、间歇性低氧方案下的通气、心血管及脑组织氧反应。受试者(n = 18,男性)被随机分为短时间间歇性低氧组(SDIH,12%氧气,间隔5分钟常氧,共1小时)或长时间间歇性低氧组(LDIH,12%氧气30分钟)。两组在12天内均进行10次暴露。在第1、3、5、8、10和12天,每天间歇性低氧暴露前测量低氧通气反应(HVR)。在间歇性低氧结束后3天和5天再次测量HVR。在所有操作过程中,测量通气、血压、心率、动脉血氧血红蛋白饱和度和脑组织氧饱和度。无论采用何种方案,在间歇性低氧暴露期间HVR均增加,并在第17天恢复至基线水平(第1天,0.84±0.50;第12天,1.20±1.01;第17天,0.95±0.58 l min⁻¹ %S(aO₂)⁻¹;P < 0.01)。收缩压敏感性变化(r = +0.68;P < 0.05)和舒张压敏感性变化(r = +0.73;P < 0.05)与HVR变化相关,而心率敏感性变化则不然(r = +0.32;无显著性差异)。在第12天,脑组织氧饱和度对低氧的敏感性变化较小,并在第17天恢复至基线水平(第1天,-0.51±0.13;第12天,-0.64±0.18;第17天,-0.51±0.13;P < 0.001)。急性暴露于SDIH使平均动脉压升高(+5 mmHg;P < 0.01),但LDIH则无此作用(P > 0.05)。SDIH和LDIH对急性渐进性低氧的通气和心血管反应具有相似作用,并阻碍脑氧合。我们的研究结果表明,健康人暴露于12天等碳酸间歇性低氧后,控制脑组织血流和氧供应所需的血管过程受到阻碍。