Shaikh Kashan A, Ryu Kee Suk, Goluch Edgar D, Nam Jwa-Min, Liu Juewen, Thaxton C Shad, Chiesl Thomas N, Barron Annelise E, Lu Yi, Mirkin Chad A, Liu Chang
Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9745-50. doi: 10.1073/pnas.0504082102. Epub 2005 Jun 28.
Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.
本文介绍了基于模块化架构的微流控芯片实验室(LOC)系统。该架构在两个层面上进行了概念化设计:单芯片层面和多芯片模块(MCM)系统层面。在单个芯片层面,采用多层方法将属于两个基本类别的组件分隔开:无源流体组件(通道和反应腔)和有源机电控制结构(传感器和致动器)。明确做出这种区分是为了简化开发过程并降低成本。属于这两类的组件分别构建在不同的物理层上,并可通过跨层互连进行流体通信通信。承载机电控制结构的芯片称为微流控试验板(FBB)。通过将一个由流体路由通道和反应器的定制排列组成的芯片(无源芯片)连接到FBB上,构建一个单一的LOC模块。通过在具有标准资源配置的FBB上使用不同的无源芯片,可以实现许多不同的LOC功能。多个模块可以互连形成一个更大的LOC系统(MCM层面)。我们通过开发用于两个不同生化应用的系统来证明这种架构的实用性:一个用于检测癌症的蛋白质标志物,另一个用于检测金属离子。在第一种情况下,通过在并行MCM系统上使用基于纳米颗粒的生物条形码协议,在500 aM浓度下检测到了游离前列腺特异性抗原。在第二种情况下,我们使用基于DNAzyme的生物传感器,在小于1 nl的溶液中以500 nM的灵敏度识别出Pb(2+)(铅)的存在。