Suppr超能文献

临床试验中期监测的贝叶斯预测方法。

Bayesian predictive approach to interim monitoring in clinical trials.

作者信息

Dmitrienko Alexei, Wang Ming-Dauh

机构信息

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

出版信息

Stat Med. 2006 Jul 15;25(13):2178-95. doi: 10.1002/sim.2204.

Abstract

This paper reviews Bayesian strategies for monitoring clinical trial data. It focuses on a Bayesian stochastic curtailment method based on the predictive probability of observing a clinically significant outcome at the scheduled end of the study given the observed data. The proposed method is applied to derive efficacy and futility stopping rules in clinical trials with continuous, normally distributed and binary endpoints. The sensitivity of the resulting stopping rules to the choice of prior distributions is examined and guidelines for choosing a prior distribution of the treatment effect are discussed. The Bayesian predictive approach is compared to the frequentist (conditional power) and mixed Bayesian-frequentist (predictive power) approaches. The interim monitoring strategies discussed in the paper are illustrated using examples from a small proof-of-concept study and a large mortality trial.

摘要

本文回顾了用于监测临床试验数据的贝叶斯策略。它着重介绍了一种基于在研究预定结束时给定观测数据观察到具有临床意义结果的预测概率的贝叶斯随机截尾方法。所提出的方法被应用于推导具有连续、正态分布和二元终点的临床试验中的疗效和无效性停止规则。研究了所得停止规则对先验分布选择的敏感性,并讨论了选择治疗效果先验分布的指导原则。将贝叶斯预测方法与频率论者(条件功效)和贝叶斯 - 频率论混合(预测功效)方法进行了比较。本文讨论的中期监测策略通过一个小型概念验证研究和一个大型死亡率试验的例子进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验