Suppr超能文献

在非比例风险情况下,利用两个形状参数未知的威布尔分布,对具有事件发生时间结局的随机截尾试验进行样本量重新估计。

Sample Size Reestimation in Stochastic Curtailment Tests With Time-to-Events Outcome in the Case of Nonproportional Hazards Utilizing Two Weibull Distributions With Unknown Shape Parameters.

作者信息

Sharma Palash, Phadnis Milind A

机构信息

Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA.

出版信息

Pharm Stat. 2025 Jan-Feb;24(1):e2429. doi: 10.1002/pst.2429. Epub 2024 Aug 18.

Abstract

Stochastic curtailment tests for Phase II two-arm trials with time-to-event end points are traditionally performed using the log-rank test. Recent advances in designing time-to-event trials have utilized the Weibull distribution with a known shape parameter estimated from historical studies. As sample size calculations depend on the value of this shape parameter, these methods either cannot be used or likely underperform/overperform when the natural variation around the point estimate is ignored. We demonstrate that when the magnitude of the Weibull shape parameters changes, unblinded interim information on the shape of the survival curves can be useful to enrich the final analysis for reestimation of the sample size. For such scenarios, we propose two Bayesian solutions to estimate the natural variations of the Weibull shape parameter. We implement these approaches under the framework of the newly proposed relative time method that allows nonproportional hazards and nonproportional time. We also demonstrate the sample size reestimation for the relative time method using three different approaches (internal pilot study approach, conditional power, and predictive power approach) at the interim stage of the trial. We demonstrate our methods using a hypothetical example and provide insights regarding the practical constraints for the proposed methods.

摘要

对于具有事件发生时间终点的II期双臂试验,传统上使用对数秩检验进行随机截尾检验。在设计事件发生时间试验方面的最新进展利用了威布尔分布,其形状参数由历史研究估计得出。由于样本量计算取决于该形状参数的值,当忽略点估计周围的自然变异时,这些方法要么无法使用,要么可能表现不佳/表现过度。我们证明,当威布尔形状参数的大小发生变化时,关于生存曲线形状的未盲法中期信息可有助于丰富最终分析,以重新估计样本量。对于此类情况,我们提出了两种贝叶斯方法来估计威布尔形状参数的自然变异。我们在新提出的相对时间方法框架下实施这些方法,该方法允许非比例风险和非比例时间。我们还在试验的中期阶段使用三种不同方法(内部预试验方法、条件把握度和预测把握度方法)展示了相对时间方法的样本量重新估计。我们使用一个假设示例展示了我们的方法,并提供了关于所提出方法实际限制的见解。

相似文献

本文引用的文献

8
Estimation of treatment effects in weighted log-rank tests.加权对数秩检验中治疗效果的估计。
Contemp Clin Trials Commun. 2017 Sep 19;8:147-155. doi: 10.1016/j.conctc.2017.09.004. eCollection 2017 Dec.
9
Bayesian cure rate models induced by frailty in survival analysis.生存分析中由脆弱性引发的贝叶斯治愈率模型。
Stat Methods Med Res. 2017 Oct;26(5):2011-2028. doi: 10.1177/0962280217708671. Epub 2017 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验