Erkanli Alaattin, Sung Minje, Costello E Jane, Angold Adrian
Department of Biostatistics and Bioinformatics, Duke University Medical School, Box 3454, Durham, NC 27710, USA.
Stat Med. 2006 Nov 30;25(22):3905-28. doi: 10.1002/sim.2496.
This paper describes a semi-parametric Bayesian approach for estimating receiver operating characteristic (ROC) curves based on mixtures of Dirichlet process priors (MDP). We address difficulties in modelling the underlying distribution of screening scores due to non-normality that may lead to incorrect choices of diagnostic cut-offs and unreliable estimates of prevalence of the disease. MDP is a robust tool for modelling non-standard diagnostic distributions associated with imperfect classification of an underlying diseased population, for example, when a diagnostic test is not a gold standard. For posterior computations, we propose an efficient Gibbs sampling framework based on a finite-dimensional approximation to MDP. We show, using both simulated and real data sets, that MDP modelling for ROC curve estimation closely parallels the frequentist kernel density estimation (KDE) approach.
本文描述了一种基于狄利克雷过程先验混合(MDP)来估计接收器操作特征(ROC)曲线的半参数贝叶斯方法。我们解决了由于非正态性导致的筛查分数潜在分布建模困难,这种非正态性可能导致诊断临界值的错误选择以及疾病患病率的不可靠估计。MDP是一种强大的工具,用于对与潜在患病群体的不完美分类相关的非标准诊断分布进行建模,例如,当诊断测试不是金标准时。对于后验计算,我们基于对MDP的有限维近似提出了一个有效的吉布斯采样框架。我们使用模拟数据集和真实数据集都表明,用于ROC曲线估计的MDP建模与频率主义核密度估计(KDE)方法非常相似。