Suppr超能文献

EM-AUC:一种用于评估基于异常的网络入侵检测系统的新算法。

EM-AUC: A Novel Algorithm for Evaluating Anomaly Based Network Intrusion Detection Systems.

作者信息

Bai Kevin Z, Fossaceca John M

机构信息

Independent Researcher, Westwood, MA 02090, USA.

Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC 20052, USA.

出版信息

Sensors (Basel). 2024 Dec 26;25(1):78. doi: 10.3390/s25010078.

Abstract

Effective network intrusion detection using anomaly scores from unsupervised machine learning models depends on the performance of the models. Although unsupervised models do not require labels during the training and testing phases, the assessment of their performance metrics during the evaluation phase still requires comparing anomaly scores against labels. In real-world scenarios, the absence of labels in massive network datasets makes it infeasible to calculate performance metrics. Therefore, it is valuable to develop an algorithm that calculates robust performance metrics without using labels. In this paper, we propose a novel algorithm, Expectation Maximization-Area Under the Curve (EM-AUC), to derive the Area Under the ROC Curve (AUC-ROC) and the Area Under the Precision-Recall Curve (AUC-PR) by treating the unavailable labels as missing data and replacing them through their posterior probabilities. This algorithm was applied to two network intrusion datasets, yielding robust results. To the best of our knowledge, this is the first time AUC-ROC and AUC-PR, derived without labels, have been used to evaluate network intrusion detection systems. The EM-AUC algorithm enables model training, testing, and performance evaluation to proceed without comprehensive labels, offering a cost-effective and scalable solution for selecting the most effective models for network intrusion detection.

摘要

利用无监督机器学习模型的异常分数进行有效的网络入侵检测取决于模型的性能。虽然无监督模型在训练和测试阶段不需要标签,但在评估阶段对其性能指标的评估仍需要将异常分数与标签进行比较。在实际场景中,海量网络数据集中缺少标签使得计算性能指标变得不可行。因此,开发一种不使用标签就能计算稳健性能指标的算法很有价值。在本文中,我们提出了一种新颖的算法,期望最大化-曲线下面积(EM-AUC),通过将不可用标签视为缺失数据并通过其后验概率进行替换,来推导ROC曲线下面积(AUC-ROC)和精确率-召回率曲线下面积(AUC-PR)。该算法应用于两个网络入侵数据集,产生了稳健的结果。据我们所知,这是首次将无标签情况下推导的AUC-ROC和AUC-PR用于评估网络入侵检测系统。EM-AUC算法使模型训练、测试和性能评估能够在没有完整标签的情况下进行,为选择最有效的网络入侵检测模型提供了一种经济高效且可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15ab/11723195/c863fbaf206f/sensors-25-00078-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验