Suppr超能文献

利用氨基酸子字母表和多个支持向量机组合对革兰氏阴性菌进行蛋白质亚细胞定位预测

Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines.

作者信息

Wang Jiren, Sung Wing-Kin, Krishnan Arun, Li Kuo-Bin

机构信息

Bioinformatics Institute, Matrix, Singapore 138671.

出版信息

BMC Bioinformatics. 2005 Jul 13;6:174. doi: 10.1186/1471-2105-6-174.

Abstract

BACKGROUND

Predicting the subcellular localization of proteins is important for determining the function of proteins. Previous works focused on predicting protein localization in Gram-negative bacteria obtained good results. However, these methods had relatively low accuracies for the localization of extracellular proteins. This paper studies ways to improve the accuracy for predicting extracellular localization in Gram-negative bacteria.

RESULTS

We have developed a system for predicting the subcellular localization of proteins for Gram-negative bacteria based on amino acid subalphabets and a combination of multiple support vector machines. The recall of the extracellular site and overall recall of our predictor reach 86.0% and 89.8%, respectively, in 5-fold cross-validation. To the best of our knowledge, these are the most accurate results for predicting subcellular localization in Gram-negative bacteria.

CONCLUSION

Clustering 20 amino acids into a few groups by the proposed greedy algorithm provides a new way to extract features from protein sequences to cover more adjacent amino acids and hence reduce the dimensionality of the input vector of protein features. It was observed that a good amino acid grouping leads to an increase in prediction performance. Furthermore, a proper choice of a subset of complementary support vector machines constructed by different features of proteins maximizes the prediction accuracy.

摘要

背景

预测蛋白质的亚细胞定位对于确定蛋白质的功能很重要。先前专注于预测革兰氏阴性菌中蛋白质定位的工作取得了良好成果。然而,这些方法在预测细胞外蛋白质的定位方面准确率相对较低。本文研究提高革兰氏阴性菌中细胞外定位预测准确率的方法。

结果

我们基于氨基酸子字母表和多个支持向量机的组合开发了一个用于预测革兰氏阴性菌蛋白质亚细胞定位的系统。在五折交叉验证中,我们的预测器对细胞外位点的召回率和总体召回率分别达到86.0%和89.8%。据我们所知,这些是预测革兰氏阴性菌亚细胞定位的最准确结果。

结论

通过提出的贪心算法将20种氨基酸聚类为几组,为从蛋白质序列中提取特征提供了一种新方法,以覆盖更多相邻氨基酸,从而降低蛋白质特征输入向量的维度。据观察,良好的氨基酸分组会导致预测性能的提高。此外,由蛋白质不同特征构建的互补支持向量机子集的适当选择可使预测准确率最大化。

相似文献

3
Gram-positive and Gram-negative subcellular localization using rotation forest and physicochemical-based features.
BMC Bioinformatics. 2015;16 Suppl 4(Suppl 4):S1. doi: 10.1186/1471-2105-16-S4-S1. Epub 2015 Feb 23.
4
Protein location prediction using atomic composition and global features of the amino acid sequence.
Biochem Biophys Res Commun. 2010 Jan 22;391(4):1670-4. doi: 10.1016/j.bbrc.2009.12.118. Epub 2009 Dec 28.
7
Predicting protein structural class based on multi-features fusion.
J Theor Biol. 2008 Jul 21;253(2):388-92. doi: 10.1016/j.jtbi.2008.03.009. Epub 2008 Mar 14.
8
MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.
Biochim Biophys Acta. 2012 Dec;1824(12):1425-33. doi: 10.1016/j.bbapap.2012.05.018. Epub 2012 Jun 15.
9
Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.
J Theor Biol. 2015 Dec 7;386:25-33. doi: 10.1016/j.jtbi.2015.08.020. Epub 2015 Sep 18.
10
SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data.
Bioinformatics. 2007 Jun 1;23(11):1410-7. doi: 10.1093/bioinformatics/btm115. Epub 2007 Mar 28.

引用本文的文献

1
In Silico Characterization of a Hypothetical Protein from ATCC 12039 Reveals a Pathogenesis-Related Protein of the Type-VI Secretion System.
Bioinform Biol Insights. 2021 Apr 22;15:11779322211011140. doi: 10.1177/11779322211011140. eCollection 2021.
2
HumDLoc: Human Protein Subcellular Localization Prediction Using Deep Neural Network.
Curr Genomics. 2020 Nov;21(7):546-557. doi: 10.2174/1389202921999200528160534.
3
Genome-wide identification and expression patterns analysis of the RPD3/HDA1 gene family in cotton.
BMC Genomics. 2020 Sep 18;21(1):643. doi: 10.1186/s12864-020-07069-w.
5
Homology modeling and assigned functional annotation of an uncharacterized antitoxin protein from Streptomyces xinghaiensis.
Bioinformation. 2015 Nov 30;11(11):493-500. doi: 10.6026/97320630011493. eCollection 2015.
6
Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.
BMC Bioinformatics. 2015;16 Suppl 12(Suppl 12):S1. doi: 10.1186/1471-2105-16-S12-S1. Epub 2015 Aug 25.
7
A survey of computational intelligence techniques in protein function prediction.
Int J Proteomics. 2014;2014:845479. doi: 10.1155/2014/845479. Epub 2014 Dec 11.
8
Efficient and interpretable prediction of protein functional classes by correspondence analysis and compact set relations.
PLoS One. 2013 Oct 11;8(10):e75542. doi: 10.1371/journal.pone.0075542. eCollection 2013.
9
An ensemble method for predicting subnuclear localizations from primary protein structures.
PLoS One. 2013;8(2):e57225. doi: 10.1371/journal.pone.0057225. Epub 2013 Feb 27.

本文引用的文献

1
Using complexity measure factor to predict protein subcellular location.
Amino Acids. 2005 Feb;28(1):57-61. doi: 10.1007/s00726-004-0148-7. Epub 2004 Dec 22.
2
SLLE for predicting membrane protein types.
J Theor Biol. 2005 Jan 7;232(1):7-15. doi: 10.1016/j.jtbi.2004.07.023.
3
Predicting 22 protein localizations in budding yeast.
Biochem Biophys Res Commun. 2004 Oct 15;323(2):425-8. doi: 10.1016/j.bbrc.2004.08.113.
4
Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition.
Protein Eng Des Sel. 2004 Jun;17(6):509-16. doi: 10.1093/protein/gzh061. Epub 2004 Aug 16.
5
Prediction of protein subcellular locations by GO-FunD-PseAA predictor.
Biochem Biophys Res Commun. 2004 Aug 6;320(4):1236-9. doi: 10.1016/j.bbrc.2004.06.073.
9
A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology.
Biochem Biophys Res Commun. 2003 Nov 21;311(3):743-7. doi: 10.1016/j.bbrc.2003.10.062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验