Suppr超能文献

基于n肽组成的支持向量机预测革兰氏阴性菌蛋白质的亚细胞定位

Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions.

作者信息

Yu Chin-Sheng, Lin Chih-Jen, Hwang Jenn-Kang

机构信息

Department of Biological Science and Technology, National Chiao Tung University, HsinChu 30050, Taiwan.

出版信息

Protein Sci. 2004 May;13(5):1402-6. doi: 10.1110/ps.03479604.

Abstract

Gram-negative bacteria have five major subcellular localization sites: the cytoplasm, the periplasm, the inner membrane, the outer membrane, and the extracellular space. The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. We present an approach to predict subcellular localization for Gram-negative bacteria. This method uses the support vector machines trained by multiple feature vectors based on n-peptide compositions. For a standard data set comprising 1443 proteins, the overall prediction accuracy reaches 89%, which, to the best of our knowledge, is the highest prediction rate ever reported. Our prediction is 14% higher than that of the recently developed multimodular PSORT-B. Because of its simplicity, this approach can be easily extended to other organisms and should be a useful tool for the high-throughput and large-scale analysis of proteomic and genomic data.

摘要

革兰氏阴性菌有五个主要的亚细胞定位位点

细胞质、周质、内膜、外膜和细胞外空间。蛋白质的亚细胞定位能够为其功能提供有价值的信息。随着已测序基因组数据的迅速增加,对用于预测亚细胞定位的自动化且准确的工具的需求变得越来越重要。我们提出了一种预测革兰氏阴性菌亚细胞定位的方法。该方法使用基于n肽组成的多个特征向量训练的支持向量机。对于一个包含1443种蛋白质的标准数据集,总体预测准确率达到89%,据我们所知,这是迄今报道的最高预测率。我们的预测比最近开发的多模块PSORT - B高出14%。由于其简单性,这种方法可以很容易地扩展到其他生物体,并且应该是蛋白质组学和基因组数据高通量大规模分析的有用工具。

相似文献

2
Large-scale predictions of gram-negative bacterial protein subcellular locations.
J Proteome Res. 2006 Dec;5(12):3420-8. doi: 10.1021/pr060404b.
4
Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins.
Protein Eng Des Sel. 2007 Jan;20(1):39-46. doi: 10.1093/protein/gzl053. Epub 2007 Jan 23.
5
Expert system for predicting protein localization sites in gram-negative bacteria.
Proteins. 1991;11(2):95-110. doi: 10.1002/prot.340110203.
6
MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.
Biochim Biophys Acta. 2012 Dec;1824(12):1425-33. doi: 10.1016/j.bbapap.2012.05.018. Epub 2012 Jun 15.
8
PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria.
Nucleic Acids Res. 2003 Jul 1;31(13):3613-7. doi: 10.1093/nar/gkg602.
9
A novel representation for apoptosis protein subcellular localization prediction using support vector machine.
J Theor Biol. 2009 Jul 21;259(2):361-5. doi: 10.1016/j.jtbi.2009.03.025. Epub 2009 Mar 27.

引用本文的文献

1
Comparative proteomics of strains of food and clinical origin reveals strain-specific adaptation mechanisms.
Front Microbiol. 2025 Aug 26;16:1640990. doi: 10.3389/fmicb.2025.1640990. eCollection 2025.
4
Identifying immunoreactive proteins in brucellin for enhanced brucellosis diagnosis: a proteomic approach.
Front Microbiol. 2025 Jul 30;16:1641710. doi: 10.3389/fmicb.2025.1641710. eCollection 2025.
5
Integrated transcriptomic, proteomic, and metabolomic analysis unveils key roles of protein and nucleic acid interactions in diabetic ulcer pathogenesis.
Front Endocrinol (Lausanne). 2025 Jun 20;16:1574858. doi: 10.3389/fendo.2025.1574858. eCollection 2025.
6
Genome-wide identification of PP2A gene family in reveals the potential role of in abiotic stress.
PeerJ. 2025 May 27;13:e19431. doi: 10.7717/peerj.19431. eCollection 2025.
9
Bioinformatics analysis of the tomato (Solanum lycopersicum) methylesterase gene family.
BMC Plant Biol. 2025 May 16;25(1):649. doi: 10.1186/s12870-025-06625-4.

本文引用的文献

1
PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria.
Nucleic Acids Res. 2003 Jul 1;31(13):3613-7. doi: 10.1093/nar/gkg602.
3
Using functional domain composition and support vector machines for prediction of protein subcellular location.
J Biol Chem. 2002 Nov 29;277(48):45765-9. doi: 10.1074/jbc.M204161200. Epub 2002 Aug 16.
4
Prediction of human protein function from post-translational modifications and localization features.
J Mol Biol. 2002 Jun 21;319(5):1257-65. doi: 10.1016/S0022-2836(02)00379-0.
6
The HMMTOP transmembrane topology prediction server.
Bioinformatics. 2001 Sep;17(9):849-50. doi: 10.1093/bioinformatics/17.9.849.
7
Support vector machine approach for protein subcellular localization prediction.
Bioinformatics. 2001 Aug;17(8):721-8. doi: 10.1093/bioinformatics/17.8.721.
8
Prediction of protein cellular attributes using pseudo-amino acid composition.
Proteins. 2001 May 15;43(3):246-55. doi: 10.1002/prot.1035.
9
Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.
J Mol Biol. 2000 Jul 21;300(4):1005-16. doi: 10.1006/jmbi.2000.3903.
10
Protein sorting signals and prediction of subcellular localization.
Adv Protein Chem. 2000;54:277-344. doi: 10.1016/s0065-3233(00)54009-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验