Suppr超能文献

α/β干扰素和白细胞介素-29在病毒感染的人髓样树突状细胞中的基因表达及抗病毒活性

Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells.

作者信息

Osterlund Pamela, Veckman Ville, Sirén Jukka, Klucher Kevin M, Hiscott John, Matikainen Sampsa, Julkunen Ilkka

机构信息

Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland.

出版信息

J Virol. 2005 Aug;79(15):9608-17. doi: 10.1128/JVI.79.15.9608-9617.2005.

Abstract

Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-alpha), alpha/beta interferon (IFN-alpha/beta), and IFN-like interleukin-28A/B (IFN-lambda2/3) and IL-29 (IFN-lambda1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or enhance the expression of TNF-alpha, IFN-alpha/beta, interleukin-28 (IL-28), and IL-29 genes was limited, whereas Sendai virus efficiently induced mDC maturation and enhanced cytokine gene expression. Influenza A virus-induced expression of TNF-alpha, IFN-alpha, IFN-beta, IL-28, and IL-29 genes was, however, dramatically enhanced when cells were pretreated with IFN-alpha. IFN-alpha priming led to increased expression of Toll-like receptor 3 (TLR3), TLR7, TLR8, MyD88, TRIF, and IFN regulatory factor 7 (IRF7) genes and enhanced influenza-induced phosphorylation and DNA binding of IRF3. Influenza A virus also enhanced the binding of NF-kappaB to the respective NF-kappaB elements of the promoters of IFN-beta and IL-29 genes. In mDC IL-29 induced MxA protein expression and possessed antiviral activity against influenza A virus, although this activity was lower than that of IFN-alpha or IFN-beta. Our results show that in human mDCs viruses can readily induce the expression of IL-28 and IL-29 genes whose gene products are likely to contribute to the host antiviral response.

摘要

树突状细胞(DCs)通过经历表型成熟和产生多种细胞因子来应对微生物感染。在本研究中,我们分析了甲型流感病毒和仙台病毒诱导DC成熟以及激活肿瘤坏死因子α(TNF-α)、α/β干扰素(IFN-α/β)、干扰素样白细胞介素-28A/B(IFN-λ2/3)和IL-29(IFN-λ1)基因在人单核细胞衍生的髓样DC(mDC)中表达的能力。甲型流感病毒诱导mDC成熟或增强TNF-α、IFN-α/β、白细胞介素-28(IL-28)和IL-29基因表达的能力有限,而仙台病毒能有效诱导mDC成熟并增强细胞因子基因表达。然而,当细胞用IFN-α预处理时,甲型流感病毒诱导的TNF-α、IFN-α、IFN-β、IL-28和IL-29基因表达显著增强。IFN-α预处理导致Toll样受体3(TLR3)、TLR7、TLR8、髓样分化因子88(MyD88)、TIR结构域衔接蛋白诱导干扰素β(TRIF)和干扰素调节因子7(IRF7)基因表达增加,并增强流感诱导的IRF3磷酸化和DNA结合。甲型流感病毒还增强了核因子κB(NF-κB)与IFN-β和IL-29基因启动子各自的NF-κB元件的结合。在mDC中,IL-29诱导Mx A蛋白表达并具有抗甲型流感病毒的活性,尽管该活性低于IFN-α或IFN-β。我们的结果表明,在人mDC中,病毒可轻易诱导IL-28和IL-29基因表达,其基因产物可能有助于宿主抗病毒反应。

相似文献

2
IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29.
J Immunol. 2005 Feb 15;174(4):1932-7. doi: 10.4049/jimmunol.174.4.1932.
3
Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor 4.
J Immunol. 2003 Apr 1;170(7):3565-71. doi: 10.4049/jimmunol.170.7.3565.
6
Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3533-8. doi: 10.1073/pnas.0308496101. Epub 2004 Feb 24.

引用本文的文献

3
The Serum ACE2, CTSL, AngII, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis.
Biomedicines. 2023 Nov 27;11(12):3160. doi: 10.3390/biomedicines11123160.
7
SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant.
Front Immunol. 2022 Sep 30;13:1016108. doi: 10.3389/fimmu.2022.1016108. eCollection 2022.
8
The gamble between oncolytic virus therapy and IFN.
Front Immunol. 2022 Aug 25;13:971674. doi: 10.3389/fimmu.2022.971674. eCollection 2022.
9
Drug-based therapeutic strategies for COVID-19-infected patients and their challenges.
Future Microbiol. 2021 Dec;16:1415-1451. doi: 10.2217/fmb-2021-0116. Epub 2021 Nov 23.

本文引用的文献

1
IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29.
J Immunol. 2005 Feb 15;174(4):1932-7. doi: 10.4049/jimmunol.174.4.1932.
2
Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways.
Eur J Immunol. 2005 Jan;35(1):236-42. doi: 10.1002/eji.200425583.
3
Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling.
Nat Struct Mol Biol. 2004 Nov;11(11):1060-7. doi: 10.1038/nsmb847. Epub 2004 Oct 24.
4
Toll-like receptor control of the adaptive immune responses.
Nat Immunol. 2004 Oct;5(10):987-95. doi: 10.1038/ni1112.
6
Recognition of single-stranded RNA viruses by Toll-like receptor 7.
Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5598-603. doi: 10.1073/pnas.0400937101. Epub 2004 Mar 19.
8
Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8.
Science. 2004 Mar 5;303(5663):1526-9. doi: 10.1126/science.1093620. Epub 2004 Feb 19.
9
Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.
Science. 2004 Mar 5;303(5663):1529-31. doi: 10.1126/science.1093616. Epub 2004 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验