Sugiyama Minetaka, Ikushima Shigehito, Nakazawa Toshimasa, Kaneko Yoshinobu, Harashima Satoshi
Osaka University, Osaka, Japan.
Biotechniques. 2005 Jun;38(6):909-14. doi: 10.2144/05386RR01.
Chromosome engineering is playing an increasingly important role in the functional analysis of genomes. A simple and efficient technology for manipulating large chromosomal segments is key to advancing these analyses. Here we describe a simple but innovative method to split chromosomes in Saccharomyces cerevisiae, which we call PCR-mediated chromosome splitting (PCS). The PCS method combines a streamlined procedure (two-step PCR and one transformation per splitting event) with the CreAoxP system for marker rescue. Using this novel method, chromosomes I (230 kb) and XV (1091 kb) of a haploid cell were split collectively into 10 minichromosomes ranging in size from 29-631 kb with high efficiency (routinely 80%) that were occasionally lost during mitotic growth in various combinations. These observations indicate that the PCS method provides an efficient tool to engineer the yeast genome and may offer a possible approach to identify minimal genome constitutions as a function of culture conditions through further splitting, followed by combinatorial loss of minichromosomes.
染色体工程在基因组功能分析中发挥着越来越重要的作用。一种简单有效的操纵大染色体片段的技术是推进这些分析的关键。在此,我们描述了一种在酿酒酵母中分裂染色体的简单但创新的方法,我们称之为PCR介导的染色体分裂(PCS)。PCS方法将简化程序(两步PCR和每次分裂事件一次转化)与用于标记拯救的CreAoxP系统相结合。使用这种新方法,单倍体细胞的染色体I(230 kb)和XV(1091 kb)被共同高效地(通常为80%)分裂成10个大小在29 - 631 kb之间的小染色体,这些小染色体在有丝分裂生长过程中偶尔会以各种组合丢失。这些观察结果表明,PCS方法为改造酵母基因组提供了一种有效的工具,并且可能提供一种可能的方法,通过进一步分裂,随后小染色体的组合丢失,来确定作为培养条件函数的最小基因组组成。