Suppr超能文献

通过过表达YCR041W实现有丝分裂生长过程中小染色体分离的稳定及其在酿酒酵母染色体工程中的应用

Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae.

作者信息

Sasano Yu, Yamagishi Kazuo, Tanikawa Marie, Nakazawa Toshimasa, Sugiyama Minetaka, Kaneko Yoshinobu, Harashima Satoshi

机构信息

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.

出版信息

J Biosci Bioeng. 2015 May;119(5):526-31. doi: 10.1016/j.jbiosc.2014.10.006. Epub 2014 Nov 15.

Abstract

Chromosome engineering enables large-scale genome manipulation and can be used as a novel technology for breeding of yeasts. PCR-mediated chromosome splitting (PCS) offers a powerful tool for chromosome engineering by enabling a yeast chromosome to be split at any desired site. By applying PCS, a huge variety of chromosome combinations can be created and the best strain under specific conditions can be selected-a technology that we have called genome reorganization. Once the optimal strain is obtained, chromosome constitutions need to be maintained stably; however, mini-chromosomes of less than 50 kb are at relatively high frequency lost during cultivation. To overcome this problem, in this study we screened for multicopy suppressors of the high loss of mini-chromosomes by using a multicopy genomic library of Saccharomyces cerevisiae. We identified a novel gene, YCR041W, that stabilizes mini-chromosomes. The translational product of YCR041W was suggested to play an important role in increasing stability for mini-chromosome maintenance, probably by decreasing the rate of loss during mitotic cell division. The stabilization of mini-chromosomes conferred by YCR041W overexpression was completely dependent on the silencing protein Sir4, suggesting that a process related to telomere function might be involved in mini-chromosome stabilization. Overexpression of YCR041W stabilized not only a yeast artificial chromosome vector, but also a mini-chromosome derived from a natural chromosome. Taking these results together, we propose that YCR041W overexpression can be used as a novel chromosome engineering tool for controlling mini-chromosome maintenance and loss.

摘要

染色体工程能够实现大规模的基因组操作,可作为一种用于酵母育种的新技术。PCR介导的染色体分裂(PCS)通过使酵母染色体能够在任何期望的位点进行分裂,为染色体工程提供了一个强大的工具。通过应用PCS,可以创造出各种各样的染色体组合,并能选择特定条件下的最佳菌株——我们将这项技术称为基因组重组。一旦获得了最优菌株,就需要稳定地维持其染色体组成;然而,小于50 kb的微型染色体在培养过程中丢失的频率相对较高。为了克服这个问题,在本研究中,我们利用酿酒酵母的多拷贝基因组文库筛选微型染色体高丢失率的多拷贝抑制子。我们鉴定出了一个新基因YCR041W,它能稳定微型染色体。YCR041W的翻译产物可能通过降低有丝分裂细胞分裂过程中的丢失率,在提高微型染色体维持稳定性方面发挥重要作用。YCR041W过表达赋予的微型染色体稳定性完全依赖于沉默蛋白Sir4,这表明与端粒功能相关的过程可能参与了微型染色体的稳定。YCR041W的过表达不仅稳定了酵母人工染色体载体,还稳定了源自天然染色体的微型染色体。综合这些结果,我们提出YCR041W过表达可作为一种用于控制微型染色体维持和丢失的新型染色体工程工具。

相似文献

2
Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes.
J Biosci Bioeng. 2012 Jun;113(6):675-82. doi: 10.1016/j.jbiosc.2012.01.013. Epub 2012 Mar 3.
3
Simultaneous Overexpression of Integrated Genes by Copy Number Amplification of a Mini-Yeast Artificial Chromosome.
J Microbiol Biotechnol. 2018 May 28;28(5):821-825. doi: 10.4014/jmb.1711.11061.
4
Cell biology. What a cell should know (but may not).
Science. 2007 Mar 9;315(5817):1374-5. doi: 10.1126/science.1140759.
5
Conditional chromosome splitting in Saccharomyces cerevisiae using the homing endonuclease PI-SceI.
Appl Microbiol Biotechnol. 2008 Jun;79(4):699-706. doi: 10.1007/s00253-008-1465-7. Epub 2008 May 7.
6
PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae.
Biotechniques. 2005 Jun;38(6):909-14. doi: 10.2144/05386RR01.
7
Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2009 Oct;84(6):1045-52. doi: 10.1007/s00253-009-2144-z. Epub 2009 Aug 15.
8
A novel role for the mitotic spindle during DNA segregation in yeast: promoting 2 microm plasmid-cohesin association.
Mol Cell Biol. 2005 May;25(10):4283-98. doi: 10.1128/MCB.25.10.4283-4298.2005.
10
Chromosome mechanics and meiotic engine maintenance.
PLoS Genet. 2008 Sep 26;4(9):e1000210. doi: 10.1371/journal.pgen.1000210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验