Suppr超能文献

通过组合缺失微型染色体实现酿酒酵母中的大规模基因组重组。

Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes.

机构信息

New Projects Development Division, Toray Industries, Inc., 10-1 Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan.

出版信息

J Biosci Bioeng. 2012 Jun;113(6):675-82. doi: 10.1016/j.jbiosc.2012.01.013. Epub 2012 Mar 3.

Abstract

A highly efficient technique, termed PCR-mediated chromosome splitting (PCS), was used to create cells containing a variety of genomic constitutions in a haploid strain of Saccharomyces cerevisiae. Using PCS, we constructed two haploid strains, ZN92 and SH6484, that carry multiple mini-chromosomes. In strain ZN92, chromosomes IV and XI were split into 16 derivative chromosomes, seven of which had no known essential genes. Strain SH6484 was constructed to have 14 mini-chromosomes carrying only non-essential genes by splitting chromosomes I, II, III, VIII, XI, XIII, XIV, XV, and XVI. Both strains were cultured under defined nutrient conditions and analyzed for combinatorial loss of mini-chromosomes. During culture, cells with various combinations of mini-chromosomes arose, indicating that genomic reorganization could be achieved by splitting chromosomes to generate mini-chromosomes followed by their combinatorial loss. We found that although non-essential mini-chromosomes were lost in various combinations in ZN92, one mini-chromosome (18kb) that harbored 12 genes was not lost. This finding suggests that the loss of some combination of these 12 non-essential genes might result in synthetic lethality. We also found examples of genome-wide amplifications induced by mini-chromosome loss. In SH6484, the mitochondrial genome, as well as the copy number of genomic regions not contained in the mini-chromosomes, was specifically amplified. We conclude that PCS allows for genomic reorganization, in terms of both combinations of mini-chromosomes and gene dosage, and we suggest that PCS could be useful for the efficient production of desired compounds by generating yeast strains with optimized genomic constitutions.

摘要

一种高效的技术,称为 PCR 介导的染色体分裂(PCS),被用于在酿酒酵母的单倍体菌株中创建具有各种基因组构成的细胞。使用 PCS,我们构建了两个携带多个微型染色体的单倍体菌株,ZN92 和 SH6484。在菌株 ZN92 中,染色体 IV 和 XI 被分裂成 16 个衍生染色体,其中 7 个没有已知的必需基因。菌株 SH6484 被构建为携带仅非必需基因的 14 个微型染色体,通过分裂染色体 I、II、III、VIII、XI、XIII、XIV、XV 和 XVI 来实现。这两个菌株都在限定的营养条件下培养,并分析微型染色体的组合丢失。在培养过程中,出现了具有各种微型染色体组合的细胞,表明通过分裂染色体产生微型染色体,然后进行它们的组合丢失,可以实现基因组重排。我们发现,尽管在 ZN92 中以各种组合丢失了非必需的微型染色体,但一个携带 12 个基因的 18kb 微型染色体没有丢失。这一发现表明,这些 12 个非必需基因的某些组合的丢失可能导致合成致死性。我们还发现了由微型染色体丢失诱导的全基因组扩增的例子。在 SH6484 中,线粒体基因组以及不包含在微型染色体中的基因组区域的拷贝数被特异性扩增。我们得出结论,PCS 允许在微型染色体组合和基因剂量方面进行基因组重排,我们建议 PCS 可以通过生成具有优化基因组构成的酵母菌株,用于高效生产所需化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验