Haemmerich Dieter, Webster John G
Division of Pediatric Cardiology, Medical University of South Carolina, 165 Ashley Ave,, Charleston, SC 29425, USA.
Biomed Eng Online. 2005 Jul 14;4:42. doi: 10.1186/1475-925X-4-42.
The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant.
We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation.
We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters.
The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
有限元方法(FEM)已被用于模拟心脏和肝脏的射频(RF)消融。有限元方法能够对无法通过解析方法或有限差分模型求解的复杂几何形状进行建模。在肝脏和心脏射频消融中,一种常见的控制模式是温度控制模式。商业有限元软件包不支持自动温度控制。大多数研究人员通过反复试验手动控制施加的功率,以保持电极尖端温度恒定。
我们在一个用C++编写的控制程序中实现了一个PI控制器。该程序在每一步之后检查尖端温度,并控制施加的电压以保持温度恒定。我们创建了一个由有限元模型和控制施加电压的软件组成的闭环系统。使用闭环系统仿真对控制器的控制参数进行了优化。
我们展示了RITA 30电极模型的温度控制三维有限元模型的结果。控制软件有效地控制了有限元模型中施加的电压,以获得并保持电极在100摄氏度的目标温度。闭环系统仿真输出与有限元模型密切相关,并使我们能够优化控制参数。
有限元模型的闭环控制使我们能够以最少的用户输入实现温度控制的射频消融。