Chandani Sushil, Lee Chiu Hong, Loechler Edward L
Biology Department, Boston University, Boston, Massachusetts 02215, USA.
Chem Res Toxicol. 2005 Jul;18(7):1108-23. doi: 10.1021/tx049646l.
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is activated to (+)-anti-B[a]PDE, which induces a variety of mutations (e.g., G --> T, G --> A, etc.) via its major adduct [+ta]-B[a]P-N2-dG. One hypothesis is that adducts (such as [+ta]-B[a]P-N2-dG) induce different mutations via different conformations, probably when replicated by different lesion-bypass DNA polymerases (DNAPs). We showed that Escherichia coli DNAP V was responsible for G --> T mutations with [+ta]-B[a]P-N2-dG in a 5'-TGT sequence (Yin et al., (2004) DNA Repair 3, 323), so we wish to study conformations of this adduct/sequence context by molecular modeling. The development of a CHARMM-based molecular dynamics (MD) simulations protocol with free-energy calculations in the presence of solvent and counterions is described. A representative base-pairing and base-displaced conformation of [+ta]-B[a]P-N2-dG in the 5'-TGT sequence are used: (1) BPmi5, which has the B[a]P moiety in the minor groove pointing toward the base on the 5'-side of the adduct, and (2) Gma5, which has the B[a]P moiety stacked with the surrounding base pairs and the dG moiety displaced into the major groove. The MD output structures are reasonable when compared to known NMR structures. Changes in DNA sequence context dramatically affect the biological consequences (e.g., mutagenesis) of [+ta]-B[a]P-N2-dG. Consequently, we also developed a MD-based free-energy perturbation (FEP) protocol to study DNA sequence changes. FEP involves the gradual "fading-out" of atoms in a starting structure (A) and "fading-in" of atoms in a final structure (B), which allows a realistic assessment of the energetic and structural changes when two structures A and B are closely related. Two DNA sequence changes are described: (1) 5'-TGT --> 5'-TGG, which involves two steps [T:A --> T:C --> G:C], and (2) 5'-TGT --> 5'-TGC, which involves three steps [T:A --> T:2AP --> C:2AP --> C:G], where 2AP (2-aminopurine) is included, because T:2AP and C:2AP retain more-or-less normal pairing orientations between complementary bases. FEP is also used to evaluate the impact that a 5'-TGT to 5'-UGT sequence change might have on mutagenesis with [+ta]-B[a]P-N2-dG. In summary, we developed (1) a CHARMM-based molecular dynamics (MD) simulations protocol with free-energy calculations in the presence of solvent and counterions to study B[a]P-N2-dG adducts in DNA duplexes, and (2) a MD-based free-energy perturbation (FEP) protocol to study DNA sequence context changes around B[a]P-N2-dG adducts.
强效诱变剂/致癌物苯并[a]芘(B[a]P)被激活生成(+)-反式-B[a]PDE,其通过主要加合物[+ta]-B[a]P-N2-dG诱导多种突变(如G→T、G→A等)。一种假说认为,加合物(如[+ta]-B[a]P-N2-dG)可能通过不同构象诱导不同突变,可能是在由不同的损伤跨越DNA聚合酶(DNAP)复制时。我们发现大肠杆菌DNAP V负责在5'-TGT序列中由[+ta]-B[a]P-N2-dG导致的G→T突变(Yin等人,(2004年)《DNA修复》3,323),所以我们希望通过分子建模研究这种加合物/序列环境的构象。描述了一种基于CHARMM的分子动力学(MD)模拟方案,该方案在有溶剂和抗衡离子存在的情况下进行自由能计算。使用了5'-TGT序列中[+ta]-B[a]P-N2-dG的一种代表性碱基配对和碱基移位构象:(1)BPmi5,其B[a]P部分位于小沟中,指向加合物5'-侧的碱基;(2)Gma5,其B[a]P部分与周围碱基对堆积,dG部分移位到大沟中。与已知的NMR结构相比,MD输出结构是合理的。DNA序列环境的变化极大地影响了[+ta]-B[a]P-N2-dG的生物学后果(如诱变)。因此,我们还开发了一种基于MD的自由能微扰(FEP)方案来研究DNA序列变化。FEP涉及起始结构(A)中原子的逐渐“淡出”和最终结构(B)中原子的逐渐“淡入”,这使得当两个结构A和B密切相关时,能够对能量和结构变化进行实际评估。描述了两种DNA序列变化:(1)5'-TGT→5'-TGG,涉及两步[T:A→T:C→G:C];(2)5'-TGT→5'-TGC,涉及三步[T:A→T:2AP→C:2AP→C:G],其中包括2-氨基嘌呤(2AP),因为T:2AP和C:2AP在互补碱基之间保留了或多或少正常的配对方向。FEP还用于评估5'-TGT到5'-UGT序列变化可能对[+ta]-B[a]P-N2-dG诱变产生的影响。总之,我们开发了(1)一种基于CHARMM的分子动力学(MD)模拟方案,在有溶剂和抗衡离子存在的情况下进行自由能计算,以研究DNA双链体中的B[a]P-N2-dG加合物;(2)一种基于MD的自由能微扰(FEP)方案,以研究B[a]P-N2-dG加合物周围的DNA序列环境变化。