Suppr超能文献

使用经直肠超声图像的前列腺癌多特征分析

Prostate cancer multi-feature analysis using trans-rectal ultrasound images.

作者信息

Mohamed S S, Salama M M A, Kamel M, El-Saadany E F, Rizkalla K, Chin J

机构信息

Electrical and Computer Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

出版信息

Phys Med Biol. 2005 Aug 7;50(15):N175-85. doi: 10.1088/0031-9155/50/15/N02. Epub 2005 Jul 19.

Abstract

This note focuses on extracting and analysing prostate texture features from trans-rectal ultrasound (TRUS) images for tissue characterization. One of the principal contributions of this investigation is the use of the information of the images' frequency domain features and spatial domain features to attain a more accurate diagnosis. Each image is divided into regions of interest (ROIs) by the Gabor multi-resolution analysis, a crucial stage, in which segmentation is achieved according to the frequency response of the image pixels. The pixels with a similar response to the same filter are grouped to form one ROI. Next, from each ROI two different statistical feature sets are constructed; the first set includes four grey level dependence matrix (GLDM) features and the second set consists of five grey level difference vector (GLDV) features. These constructed feature sets are then ranked by the mutual information feature selection (MIFS) algorithm. Here, the features that provide the maximum mutual information of each feature and class (cancerous and non-cancerous) and the minimum mutual information of the selected features are chosen, yielding a reduced feature subset. The two constructed feature sets, GLDM and GLDV, as well as the reduced feature subset, are examined in terms of three different classifiers: the condensed k-nearest neighbour (CNN), the decision tree (DT) and the support vector machine (SVM). The accuracy classification results range from 87.5% to 93.75%, where the performance of the SVM and that of the DT are significantly better than the performance of the CNN.

摘要

本笔记重点关注从经直肠超声(TRUS)图像中提取和分析前列腺纹理特征以进行组织表征。本研究的主要贡献之一是利用图像的频域特征和空间域特征信息来实现更准确的诊断。通过Gabor多分辨率分析将每幅图像划分为感兴趣区域(ROI),这是一个关键阶段,其中根据图像像素的频率响应进行分割。对同一滤波器具有相似响应的像素被分组形成一个ROI。接下来,从每个ROI构建两个不同的统计特征集;第一组包括四个灰度共生矩阵(GLDM)特征,第二组由五个灰度差分向量(GLDV)特征组成。然后通过互信息特征选择(MIFS)算法对这些构建的特征集进行排序。这里,选择每个特征与类别(癌性和非癌性)提供最大互信息且所选特征之间互信息最小的特征,从而得到一个简化的特征子集。针对三种不同的分类器对构建的两个特征集GLDM和GLDV以及简化的特征子集进行检验:浓缩k近邻(CNN)、决策树(DT)和支持向量机(SVM)。准确率分类结果在87.5%至93.75%之间,其中SVM和DT的性能明显优于CNN的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验