Suppr超能文献

系统-药物代谢动力学/药物毒理学:资源与网络方法

Systems-ADME/Tox: resources and network approaches.

作者信息

Ekins Sean

机构信息

GeneGo, 500 Renaissance Drive, Suite 106, St. Joseph, MI 49085, USA.

出版信息

J Pharmacol Toxicol Methods. 2006 Jan-Feb;53(1):38-66. doi: 10.1016/j.vascn.2005.05.005. Epub 2005 Jul 27.

Abstract

The increasing cost of drug development is partially due to our failure to identify undesirable compounds at an early enough stage of development. The application of higher throughput screening methods have resulted in the generation of very large datasets from cells in vitro or from in vivo experiments following the treatment with drugs or known toxins. In recent years the development of systems biology, databases and pathway software has enabled the analysis of the high-throughput data in the context of the whole cell. One of the latest technology paradigms to be applied alongside the existing in vitro and computational models for absorption, distribution, metabolism, excretion and toxicology (ADME/Tox) involves the integration of complex multidimensional datasets, termed toxicogenomics. The goal is to provide a more complete understanding of the effects a molecule might have on the entire biological system. However, due to the sheer complexity of this data it may be necessary to apply one or more different types of computational approaches that have as yet not been fully utilized in this field. The present review describes the data generated currently and introduces computational approaches as a component of ADME/Tox. These methods include network algorithms and manually curated databases of interactions that have been separately classified under systems biology methods. The integration of these disparate tools will result in systems-ADME/Tox and it is important to understand exactly what data resources and technologies are available and applicable. Examples of networks derived with important drug transporters and drug metabolizing enzymes are provided to demonstrate the network technologies.

摘要

药物研发成本不断增加,部分原因在于我们未能在研发的足够早期阶段识别出不良化合物。高通量筛选方法的应用使得在体外细胞或药物或已知毒素处理后的体内实验中生成了非常大的数据集。近年来,系统生物学、数据库和通路软件的发展使得能够在全细胞背景下分析高通量数据。与现有的体外和计算模型一起应用于吸收、分布、代谢、排泄和毒理学(ADME/Tox)的最新技术范式之一涉及整合复杂的多维数据集,即毒理基因组学。目标是更全面地了解一种分子可能对整个生物系统产生的影响。然而,由于这些数据极其复杂,可能有必要应用一种或多种尚未在该领域充分利用的不同类型的计算方法。本综述描述了当前生成的数据,并介绍了作为ADME/Tox组成部分的计算方法。这些方法包括网络算法和人工整理的相互作用数据库,它们已在系统生物学方法下分别分类。整合这些不同的工具将产生系统ADME/Tox,准确了解哪些数据资源和技术可用且适用非常重要。提供了由重要药物转运体和药物代谢酶衍生的网络示例,以展示网络技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验