Suppr超能文献

预测药物与人类有机阴离子转运体4(OAT4)相互作用的计算方法

Computational Approaches for Predicting Drug Interactions with Human Organic Anion Transporter 4 (OAT4).

作者信息

Martinez-Guerrero Lucy, Vignaux Patricia A, Harris Joshua S, Lane Thomas R, Urbina Fabio, Wright Stephen H, Ekins Sean, Cherrington Nathan J

机构信息

Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel, Tucson, Arizona 85721, United States.

Collaborations Pharmaceuticals, Inc., 840 Main Campus Dr., Raleigh, North Carolina 27606, United States.

出版信息

Mol Pharm. 2025 Apr 7;22(4):1847-1858. doi: 10.1021/acs.molpharmaceut.4c00984. Epub 2025 Mar 20.

Abstract

Human Organic Anion Transporter 4 (OAT4) is predominantly expressed in the kidneys, particularly in the apical membrane of the proximal tubule cells. This transporter is involved in the renal handling of endogenous and exogenous organic anions (OAs), making it an important transporter for drug-drug interactions (DDIs). To better understand OAT4-compound interactions, we generated single concentration (25 μM) inhibition data for over 1400 small molecules against the uptake of the fluorescent OA 6-carboxyfluorescein (6-CF) in Chinese hamster ovary (CHO) cells. Several drugs exhibiting higher than 50% inhibition in this initial screen were selected to determine IC values against three structurally distinct OAT4 substrates: estrone sulfate (ES), ochratoxin A (OTA), and 6-CF. These IC values were then compared to the drug plasma concentration as per the 2020 FDA drug-drug interaction (DDI) guidance. Several screened compounds, including some not previously reported, emerged as novel inhibitors of OAT4. These data were also used to build machine learning classification models to predict the activity of potential OAT4 inhibitors. We compared multiple machine learning algorithms and data cleaning techniques to model these screening data and investigated the utility of conformal predictors to predict OAT4 inhibition of a leave-out set. These experimental and computational approaches allowed us to model diverse and unbalanced data to enable predictions for DDIs mediated by this transporter.

摘要

人类有机阴离子转运体4(OAT4)主要在肾脏中表达,特别是在近端小管细胞的顶端膜中。该转运体参与内源性和外源性有机阴离子(OA)的肾脏处理,使其成为药物相互作用(DDI)的重要转运体。为了更好地理解OAT4与化合物的相互作用,我们生成了超过1400种小分子在单一浓度(25μM)下对中国仓鼠卵巢(CHO)细胞中荧光性OA 6-羧基荧光素(6-CF)摄取的抑制数据。在这个初步筛选中,选择了几种抑制率高于50%的药物,以确定针对三种结构不同的OAT4底物:硫酸雌酮(ES)、赭曲霉毒素A(OTA)和6-CF的IC值。然后根据2020年美国食品药品监督管理局(FDA)的药物相互作用(DDI)指南,将这些IC值与药物血浆浓度进行比较。几种筛选出的化合物,包括一些以前未报道过的化合物,成为了OAT4的新型抑制剂。这些数据还被用于构建机器学习分类模型,以预测潜在OAT4抑制剂的活性。我们比较了多种机器学习算法和数据清理技术,对这些筛选数据进行建模,并研究了共形预测器对遗漏集的OAT4抑制作用进行预测的效用。这些实验和计算方法使我们能够对多样且不平衡的数据进行建模,从而预测由该转运体介导的DDI。

相似文献

本文引用的文献

3
Comparing LD/LC Machine Learning Models for Multiple Species.比较多种物种的LD/LC机器学习模型
J Chem Health Saf. 2023 Mar 27;30(2):83-97. doi: 10.1021/acs.chas.2c00088. Epub 2023 Feb 23.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验