Suppr超能文献

小鼠突变体sfx中的自发性骨折是由古洛糖酸内酯氧化酶基因缺失导致维生素C缺乏引起的。

Spontaneous fractures in the mouse mutant sfx are caused by deletion of the gulonolactone oxidase gene, causing vitamin C deficiency.

作者信息

Mohan Subburaman, Kapoor Anil, Singgih Anny, Zhang Zhang, Taylor Tim, Yu Hongrun, Chadwick Robert B, Chung Yoon-Sok, Donahue Leah Rae, Rosen Clifford, Crawford Grace C, Wergedal Jon, Baylink David J

机构信息

Molecular Genetics Division, Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA.

出版信息

J Bone Miner Res. 2005 Sep;20(9):1597-610. doi: 10.1359/JBMR.050406. Epub 2005 Apr 18.

Abstract

UNLABELLED

Using a mouse mutant that fractures spontaneously and dies at a very young age, we identified that a deletion of the GULO gene, which is involved in the synthesis of vitamin C, is the cause of impaired osteoblast differentiation, reduced bone formation, and development of spontaneous fractures.

INTRODUCTION

A major public health problem worldwide, osteoporosis is a disease characterized by inadequate bone mass necessary for mechanical support, resulting in bone fracture. To identify the genetic basis for osteoporotic fractures, we used a mouse model that develops spontaneous fractures (sfx) at a very early age.

MATERIALS AND METHODS

Skeletal phenotype of the sfx phenotype was evaluated by DXA using PIXImus instrumentation and by dynamic histomorphometry. The sfx gene was identified using various molecular genetic approaches, including fine mapping and sequencing of candidate genes, whole genome microarray, and PCR amplification of candidate genes using cDNA and genomic DNA as templates. Gene expression of selected candidate genes was performed using real-time PCR analysis. Osteoblast differentiation was measured by bone marrow stromal cell nodule assay.

RESULTS

Femur and tibial BMD were reduced by 27% and 36%, respectively, in sfx mice at 5 weeks of age. Histomorphometric analyses of bones from sfx mice revealed that bone formation rate is reduced by >90% and is caused by impairment of differentiated functions of osteoblasts. The sfx gene was fine mapped to a 2 MB region containing approximately 30 genes in chromosome 14. By using various molecular genetic approaches, we identified that deletion of the gulonolactone oxidase (GULO) gene, which is involved in the synthesis of ascorbic acid, is responsible for the sfx phenotype. We established that ascorbic acid deficiency caused by deletion of the GULO gene (38,146-bp region) contributes to fractures and premature death because the sfx phenotype can be corrected in vivo by treating sfx mice with ascorbic acid and because osteoblasts derived from sfx mice are only able to form mineralized nodules when treated with ascorbic acid. Treatment of bone marrow stromal cells derived from sfx/sfx mice in vitro with ascorbic acid increased expression levels of type I collagen, alkaline phosphatase, and osteocalcin several-fold.

CONCLUSION

The sfx is a mutation of the GULO gene, which leads to ascorbic acid deficiency, impaired osteoblast cell function, and fractures in affected mice. Based on these and other findings, we propose that ascorbic acid is essential for the maintenance of differentiated functions of osteoblasts and other cell types.

摘要

未标记

利用一种会自发骨折并在非常年轻时死亡的小鼠突变体,我们确定参与维生素C合成的古洛糖酸内酯氧化酶(GULO)基因缺失是成骨细胞分化受损、骨形成减少和自发性骨折发生的原因。

引言

骨质疏松症是全球主要的公共卫生问题,是一种以缺乏机械支撑所需骨量为特征的疾病,会导致骨折。为了确定骨质疏松性骨折的遗传基础,我们使用了一种在非常早期就会发生自发性骨折(sfx)的小鼠模型。

材料与方法

通过使用PIXImus仪器的双能X线吸收法(DXA)和动态组织形态计量学评估sfx表型的骨骼表型。使用各种分子遗传学方法鉴定sfx基因,包括候选基因的精细定位和测序、全基因组微阵列以及以cDNA和基因组DNA为模板对候选基因进行PCR扩增。使用实时PCR分析对选定候选基因的基因表达进行检测。通过骨髓基质细胞结节试验测量成骨细胞分化。

结果

5周龄的sfx小鼠股骨和胫骨的骨密度分别降低了27%和36%。对sfx小鼠骨骼的组织形态计量学分析表明,骨形成率降低了90%以上,这是由成骨细胞分化功能受损导致的。sfx基因被精细定位到14号染色体上一个包含约30个基因的2兆碱基区域。通过使用各种分子遗传学方法,我们确定参与抗坏血酸合成的古洛糖酸内酯氧化酶(GULO)基因缺失是sfx表型的原因。我们证实,由GULO基因(38,146碱基对区域)缺失导致的抗坏血酸缺乏会导致骨折和过早死亡,因为用抗坏血酸治疗sfx小鼠可在体内纠正sfx表型,并且来自sfx小鼠的成骨细胞只有在用抗坏血酸处理时才能形成矿化结节。用抗坏血酸体外处理源自sfx/sfx小鼠的骨髓基质细胞,可使I型胶原蛋白、碱性磷酸酶和骨钙素的表达水平提高数倍。

结论

sfx是GULO基因的一种突变,它导致抗坏血酸缺乏、成骨细胞功能受损以及受影响小鼠发生骨折。基于这些及其他发现,我们提出抗坏血酸对于维持成骨细胞和其他细胞类型的分化功能至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验