Sivaramakrishnan Santhosh, Keerthi Kripa, Gates Kent S
Departments of Chemistry and Biochemistry, University of Missouri, Columbia, MO 65211, USA.
J Am Chem Soc. 2005 Aug 10;127(31):10830-1. doi: 10.1021/ja052599e.
Growing evidence indicates that endogenously produced hydrogen peroxide acts as a cellular signaling molecule that (among other things) can regulate the activity of some protein phosphatases. Recent X-ray crystallographic studies revealed an unexpected chemical transformation underlying the redox regulation of protein tyrosine phosphatase 1B, in which oxidative inactivation of the enzyme yields an intrastrand protein cross-link between the catalytic cysteine residue and its neighboring amide nitrogen. This work describes a small organic molecule that serves as an effective model for the redox-sensing assembly of functional groups at the active site of PTP1B. Findings obtained using this model system suggest that the oxidative transformation of PTP1B to its "crosslinked" inactive form can proceed directly via oxidation of the active-site cysteine to a sulfenic acid (RSOH). The remarkably facile nature of this protein cross-link-forming reaction, along with the widespread cellular occurrence of protein sulfenic acids generated via oxidation of cysteine residues, suggests that the type of oxidative protein cross-link formation first seen in the context of PTP1B represents a potentially general mechanism for redox "switching" of protein function. Thus, the chemistry characterized here could have broad relevance to both redox-regulated signal transduction and the toxic effects of oxidative stress.
越来越多的证据表明,内源性产生的过氧化氢作为一种细胞信号分子(除其他作用外)可调节某些蛋白质磷酸酶的活性。最近的X射线晶体学研究揭示了蛋白质酪氨酸磷酸酶1B氧化还原调节背后意想不到的化学转变,其中该酶的氧化失活在催化半胱氨酸残基与其相邻酰胺氮之间产生链内蛋白质交联。这项工作描述了一种小分子,它作为PTP1B活性位点上氧化还原感应官能团组装的有效模型。使用该模型系统获得的研究结果表明,PTP1B氧化转化为其“交联”无活性形式可直接通过活性位点半胱氨酸氧化为亚磺酸(RSOH)进行。这种蛋白质交联形成反应的显著简易性,以及通过半胱氨酸残基氧化产生的蛋白质亚磺酸在细胞中广泛存在,表明在PTP1B背景下首次发现的氧化蛋白质交联形成类型代表了蛋白质功能氧化还原“切换”的潜在通用机制。因此,此处表征的化学性质可能与氧化还原调节的信号转导和氧化应激的毒性作用都具有广泛相关性。