Suppr超能文献

基因型适合度值的排序预测了在缺乏符号上位性的景观上自然选择的遗传限制。

The rank ordering of genotypic fitness values predicts genetic constraint on natural selection on landscapes lacking sign epistasis.

作者信息

Weinreich Daniel M

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Genetics. 2005 Nov;171(3):1397-405. doi: 10.1534/genetics.104.036830. Epub 2005 Aug 3.

Abstract

Sewall Wright's genotypic fitness landscape makes explicit one mechanism by which epistasis for fitness can constrain evolution by natural selection. Wright distinguished between landscapes possessing multiple fitness peaks and those with only a single peak and emphasized that the former class imposes substantially greater constraint on natural selection. Here I present novel formalism that more finely partitions the universe of possible fitness landscapes on the basis of the rank ordering of their genotypic fitness values. In this report I focus on fitness landscapes lacking sign epistasis (i.e., landscapes that lack mutations the sign of whose fitness effect varies epistatically), which constitute a subset of Wright's single peaked landscapes. More than one fitness rank ordering lacking sign epistasis exists for L > 2 (where L is the number of interacting loci), and I find that a highly statistically significant effect exists between landscape membership in fitness rank-ordering partition and two different proxies for genetic constraint, even within this subset of landscapes. This statistical association is robust to population size, permitting general inferences about some of the characteristics of fitness rank orderings responsible for genetic constraint on natural selection.

摘要

休厄尔·赖特的基因型适合度景观明确了一种机制,通过这种机制,适合度的上位性可以通过自然选择来限制进化。赖特区分了具有多个适合度峰值的景观和只有一个峰值的景观,并强调前者对自然选择施加的限制要大得多。在这里,我提出了一种新颖的形式体系,它基于基因型适合度值的排序,更精细地划分了可能的适合度景观的范围。在本报告中,我关注缺乏符号上位性的适合度景观(即缺乏其适合度效应的符号会因上位性而变化的突变的景观),这构成了赖特单峰景观的一个子集。对于L>2(其中L是相互作用位点的数量),存在不止一种缺乏符号上位性的适合度排序,并且我发现,即使在这个景观子集中,适合度排序分区中的景观成员身份与两种不同的遗传限制代理之间也存在高度统计学显著的效应。这种统计关联对种群大小具有鲁棒性,从而可以对负责自然选择遗传限制的适合度排序的一些特征进行一般推断。

相似文献

2
Genotypic Complexity of Fisher's Geometric Model.
Genetics. 2017 Jun;206(2):1049-1079. doi: 10.1534/genetics.116.199497. Epub 2017 Apr 26.
3
Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
J Theor Biol. 2016 May 7;396:132-43. doi: 10.1016/j.jtbi.2016.01.037. Epub 2016 Feb 20.
4
Computational Complexity as an Ultimate Constraint on Evolution.
Genetics. 2019 May;212(1):245-265. doi: 10.1534/genetics.119.302000. Epub 2019 Mar 4.
5
Exploring the effect of sex on empirical fitness landscapes.
Am Nat. 2009 Jul;174 Suppl 1:S15-30. doi: 10.1086/599081.
7
Properties of selected mutations and genotypic landscapes under Fisher's geometric model.
Evolution. 2014 Dec;68(12):3537-54. doi: 10.1111/evo.12545. Epub 2014 Nov 17.
8
On the incongruence of genotype-phenotype and fitness landscapes.
PLoS Comput Biol. 2022 Sep 19;18(9):e1010524. doi: 10.1371/journal.pcbi.1010524. eCollection 2022 Sep.
9
Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes.
J Theor Biol. 2011 Mar 7;272(1):141-4. doi: 10.1016/j.jtbi.2010.12.015. Epub 2010 Dec 16.
10
Analysis of epistatic interactions and fitness landscapes using a new geometric approach.
BMC Evol Biol. 2007 Apr 13;7:60. doi: 10.1186/1471-2148-7-60.

引用本文的文献

1
Polygenic prediction and gene regulation networks.
R Soc Open Sci. 2025 May 21;12(5):241992. doi: 10.1098/rsos.241992. eCollection 2025 May.
2
Genetic Interactions in Various Environmental Conditions in .
Genes (Basel). 2023 Nov 15;14(11):2080. doi: 10.3390/genes14112080.
3
The Pseudomonas aeruginosa Resistome: Permanent and Transient Antibiotic Resistance, an Overview.
Methods Mol Biol. 2024;2721:85-102. doi: 10.1007/978-1-0716-3473-8_7.
4
Path probability selection in nature and path integral.
Sci Rep. 2022 Nov 9;12(1):19044. doi: 10.1038/s41598-022-20235-2.
5
Evolution of Habitat-Dependent Antibiotic Resistance in Pseudomonas aeruginosa.
Microbiol Spectr. 2022 Aug 31;10(4):e0024722. doi: 10.1128/spectrum.00247-22. Epub 2022 Jun 29.
7
Long-term evolution on complex fitness landscapes when mutation is weak.
Heredity (Edinb). 2018 Nov;121(5):449-465. doi: 10.1038/s41437-018-0142-6. Epub 2018 Sep 19.
8
Diminishing-returns epistasis among random beneficial mutations in a multicellular fungus.
Proc Biol Sci. 2016 Aug 31;283(1837). doi: 10.1098/rspb.2016.1376.
9
Genetically integrated traits and rugged adaptive landscapes in digital organisms.
BMC Evol Biol. 2015 May 12;15:83. doi: 10.1186/s12862-015-0361-x.
10
Environmental dependence of genetic constraint.
PLoS Genet. 2013 Jun;9(6):e1003580. doi: 10.1371/journal.pgen.1003580. Epub 2013 Jun 27.

本文引用的文献

1
PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY.
Evolution. 1996 Jun;50(3):967-976. doi: 10.1111/j.1558-5646.1996.tb02339.x.
2
MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE.
Evolution. 1984 Sep;38(5):1116-1129. doi: 10.1111/j.1558-5646.1984.tb00380.x.
5
The probability of parallel evolution.
Evolution. 2005 Jan;59(1):216-20.
6
Stochastic tunnels in evolutionary dynamics.
Genetics. 2004 Mar;166(3):1571-9. doi: 10.1534/genetics.166.3.1571.
7
Comparative recombination rates in the rat, mouse, and human genomes.
Genome Res. 2004 Apr;14(4):528-38. doi: 10.1101/gr.1970304.
9
On the probability of fixation of mutant genes in a population.
Genetics. 1962 Jun;47(6):713-9. doi: 10.1093/genetics/47.6.713.
10
The distribution of fitness effects among beneficial mutations.
Genetics. 2003 Apr;163(4):1519-26. doi: 10.1093/genetics/163.4.1519.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验