Department of Computer Science, University of Oxford, Oxford, OX1 3QD, United Kingdom
Department of Translational Hematology and Oncology Research, Cleveland Clinic, Ohio 44195
Genetics. 2019 May;212(1):245-265. doi: 10.1534/genetics.119.302000. Epub 2019 Mar 4.
Experiments show that evolutionary fitness landscapes can have a rich combinatorial structure due to epistasis. For some landscapes, this structure can produce a computational constraint that prevents evolution from finding local fitness optima-thus overturning the traditional assumption that local fitness peaks can always be reached quickly if no other evolutionary forces challenge natural selection. Here, I introduce a distinction between easy landscapes of traditional theory where local fitness peaks can be found in a moderate number of steps, and hard landscapes where finding local optima requires an infeasible amount of time. Hard examples exist even among landscapes with no reciprocal sign epistasis; on these semismooth fitness landscapes, strong selection weak mutation dynamics cannot find the unique peak in polynomial time. More generally, on hard rugged fitness landscapes that include reciprocal sign epistasis, no evolutionary dynamics-even ones that do not follow adaptive paths-can find a local fitness optimum quickly. Moreover, on hard landscapes, the fitness advantage of nearby mutants cannot drop off exponentially fast but has to follow a power-law that long-term evolution experiments have associated with unbounded growth in fitness. Thus, the constraint of computational complexity enables open-ended evolution on finite landscapes. Knowing this constraint allows us to use the tools of theoretical computer science and combinatorial optimization to characterize the fitness landscapes that we expect to see in nature. I present candidates for hard landscapes at scales from single genes, to microbes, to complex organisms with costly learning (Baldwin effect) or maintained cooperation (Hankshaw effect). Just how ubiquitous hard landscapes (and the corresponding ultimate constraint on evolution) are in nature becomes an open empirical question.
实验表明,由于遗传相互作用,进化适应性景观可能具有丰富的组合结构。对于某些景观,这种结构会产生一种计算上的限制,阻止进化找到局部适应度最优值——从而推翻了传统的假设,即如果没有其他进化力量挑战自然选择,局部适应度峰值总是可以快速达到。在这里,我引入了一个区别,即传统理论中的简单景观,其中可以在适中的步骤中找到局部适应度峰值,以及困难景观,其中找到局部最优值需要不可行的时间量。即使在没有互惠符号遗传相互作用的景观中也存在困难的例子;在这些半平滑适应度景观中,强选择弱突变动力学无法在多项式时间内找到唯一的峰值。更一般地说,在包括互惠符号遗传相互作用的困难崎岖的适应度景观上,即使没有遵循适应性路径的进化动力学,也无法快速找到局部适应度最优值。此外,在困难的景观中,附近突变体的适应度优势不能快速呈指数下降,而必须遵循一种幂律,长期进化实验将其与适应度的无限增长相关联。因此,计算复杂性的限制使有限景观上的进化具有无限的可能性。了解这种限制使我们能够利用理论计算机科学和组合优化的工具来描述我们预计在自然界中会看到的适应度景观。我提出了困难景观的候选者,从单个基因到微生物,再到具有昂贵学习(鲍德温效应)或维持合作(汉克肖效应)的复杂生物。困难景观(以及对进化的相应最终限制)在自然界中是多么普遍,这成为一个开放的经验问题。