Suppr超能文献

计算复杂性作为进化的终极约束。

Computational Complexity as an Ultimate Constraint on Evolution.

机构信息

Department of Computer Science, University of Oxford, Oxford, OX1 3QD, United Kingdom

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Ohio 44195

出版信息

Genetics. 2019 May;212(1):245-265. doi: 10.1534/genetics.119.302000. Epub 2019 Mar 4.

Abstract

Experiments show that evolutionary fitness landscapes can have a rich combinatorial structure due to epistasis. For some landscapes, this structure can produce a computational constraint that prevents evolution from finding local fitness optima-thus overturning the traditional assumption that local fitness peaks can always be reached quickly if no other evolutionary forces challenge natural selection. Here, I introduce a distinction between easy landscapes of traditional theory where local fitness peaks can be found in a moderate number of steps, and hard landscapes where finding local optima requires an infeasible amount of time. Hard examples exist even among landscapes with no reciprocal sign epistasis; on these semismooth fitness landscapes, strong selection weak mutation dynamics cannot find the unique peak in polynomial time. More generally, on hard rugged fitness landscapes that include reciprocal sign epistasis, no evolutionary dynamics-even ones that do not follow adaptive paths-can find a local fitness optimum quickly. Moreover, on hard landscapes, the fitness advantage of nearby mutants cannot drop off exponentially fast but has to follow a power-law that long-term evolution experiments have associated with unbounded growth in fitness. Thus, the constraint of computational complexity enables open-ended evolution on finite landscapes. Knowing this constraint allows us to use the tools of theoretical computer science and combinatorial optimization to characterize the fitness landscapes that we expect to see in nature. I present candidates for hard landscapes at scales from single genes, to microbes, to complex organisms with costly learning (Baldwin effect) or maintained cooperation (Hankshaw effect). Just how ubiquitous hard landscapes (and the corresponding ultimate constraint on evolution) are in nature becomes an open empirical question.

摘要

实验表明,由于遗传相互作用,进化适应性景观可能具有丰富的组合结构。对于某些景观,这种结构会产生一种计算上的限制,阻止进化找到局部适应度最优值——从而推翻了传统的假设,即如果没有其他进化力量挑战自然选择,局部适应度峰值总是可以快速达到。在这里,我引入了一个区别,即传统理论中的简单景观,其中可以在适中的步骤中找到局部适应度峰值,以及困难景观,其中找到局部最优值需要不可行的时间量。即使在没有互惠符号遗传相互作用的景观中也存在困难的例子;在这些半平滑适应度景观中,强选择弱突变动力学无法在多项式时间内找到唯一的峰值。更一般地说,在包括互惠符号遗传相互作用的困难崎岖的适应度景观上,即使没有遵循适应性路径的进化动力学,也无法快速找到局部适应度最优值。此外,在困难的景观中,附近突变体的适应度优势不能快速呈指数下降,而必须遵循一种幂律,长期进化实验将其与适应度的无限增长相关联。因此,计算复杂性的限制使有限景观上的进化具有无限的可能性。了解这种限制使我们能够利用理论计算机科学和组合优化的工具来描述我们预计在自然界中会看到的适应度景观。我提出了困难景观的候选者,从单个基因到微生物,再到具有昂贵学习(鲍德温效应)或维持合作(汉克肖效应)的复杂生物。困难景观(以及对进化的相应最终限制)在自然界中是多么普遍,这成为一个开放的经验问题。

相似文献

1
Computational Complexity as an Ultimate Constraint on Evolution.
Genetics. 2019 May;212(1):245-265. doi: 10.1534/genetics.119.302000. Epub 2019 Mar 4.
3
Getting higher on rugged landscapes: Inversion mutations open access to fitter adaptive peaks in NK fitness landscapes.
PLoS Comput Biol. 2022 Oct 31;18(10):e1010647. doi: 10.1371/journal.pcbi.1010647. eCollection 2022 Oct.
4
Genotypic Complexity of Fisher's Geometric Model.
Genetics. 2017 Jun;206(2):1049-1079. doi: 10.1534/genetics.116.199497. Epub 2017 Apr 26.
5
Predictable properties of fitness landscapes induced by adaptational tradeoffs.
Elife. 2020 May 19;9:e55155. doi: 10.7554/eLife.55155.
6
Cancer progression models and fitness landscapes: a many-to-many relationship.
Bioinformatics. 2018 Mar 1;34(5):836-844. doi: 10.1093/bioinformatics/btx663.
7
Evolution Rapidly Optimizes Stability and Aggregation in Lattice Proteins Despite Pervasive Landscape Valleys and Mazes.
Genetics. 2020 Apr;214(4):1047-1057. doi: 10.1534/genetics.120.302815. Epub 2020 Feb 27.
8
Exploring the effect of sex on empirical fitness landscapes.
Am Nat. 2009 Jul;174 Suppl 1:S15-30. doi: 10.1086/599081.
9
On the incongruence of genotype-phenotype and fitness landscapes.
PLoS Comput Biol. 2022 Sep 19;18(9):e1010524. doi: 10.1371/journal.pcbi.1010524. eCollection 2022 Sep.
10
Impact of population size on early adaptation in rugged fitness landscapes.
Philos Trans R Soc Lond B Biol Sci. 2023 May 22;378(1877):20220045. doi: 10.1098/rstb.2022.0045. Epub 2023 Apr 3.

引用本文的文献

1
Open-endedness in synthetic biology: A route to continual innovation for biological design.
Sci Adv. 2024 Jan 19;10(3):eadi3621. doi: 10.1126/sciadv.adi3621.
2
Evolution of biological cooperation: an algorithmic approach.
Sci Rep. 2024 Jan 17;14(1):1468. doi: 10.1038/s41598-024-52028-0.
3
Epistasis and pleiotropy shape biophysical protein subspaces associated with drug resistance.
Phys Rev E. 2023 Nov;108(5-1):054408. doi: 10.1103/PhysRevE.108.054408.
5
Novelty Search Promotes Antigenic Diversity in Microbial Pathogens.
Pathogens. 2023 Feb 28;12(3):388. doi: 10.3390/pathogens12030388.
6
Getting higher on rugged landscapes: Inversion mutations open access to fitter adaptive peaks in NK fitness landscapes.
PLoS Comput Biol. 2022 Oct 31;18(10):e1010647. doi: 10.1371/journal.pcbi.1010647. eCollection 2022 Oct.
7
Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations.
PLoS Genet. 2022 Aug 18;18(8):e1010324. doi: 10.1371/journal.pgen.1010324. eCollection 2022 Aug.
8
The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer.
Dyn Games Appl. 2022;12(2):313-342. doi: 10.1007/s13235-021-00397-w. Epub 2021 Aug 30.
9
10
Theory Before the Test: How to Build High-Verisimilitude Explanatory Theories in Psychological Science.
Perspect Psychol Sci. 2021 Jul;16(4):682-697. doi: 10.1177/1745691620970604. Epub 2021 Jan 6.

本文引用的文献

1
Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory.
Commun Biol. 2018 Jun 14;1:71. doi: 10.1038/s42003-018-0078-7. eCollection 2018.
2
Pairwise and higher-order genetic interactions during the evolution of a tRNA.
Nature. 2018 Jun;558(7708):117-121. doi: 10.1038/s41586-018-0170-7. Epub 2018 May 30.
3
Key issues review: evolution on rugged adaptive landscapes.
Rep Prog Phys. 2018 Jan;81(1):012602. doi: 10.1088/1361-6633/aa94d4.
4
MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE.
Evolution. 1984 Sep;38(5):1116-1129. doi: 10.1111/j.1558-5646.1984.tb00380.x.
5
Selection Limits to Adaptive Walks on Correlated Landscapes.
Genetics. 2017 Feb;205(2):803-825. doi: 10.1534/genetics.116.189340. Epub 2016 Nov 23.
6
On the (un)predictability of a large intragenic fitness landscape.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14085-14090. doi: 10.1073/pnas.1612676113. Epub 2016 Nov 18.
7
The evolution of cooperation by the Hankshaw effect.
Evolution. 2016 Jun;70(6):1376-85. doi: 10.1111/evo.12928. Epub 2016 May 5.
8
The fitness landscape of a tRNA gene.
Science. 2016 May 13;352(6287):837-40. doi: 10.1126/science.aae0568. Epub 2016 Apr 14.
9
Network of epistatic interactions within a yeast snoRNA.
Science. 2016 May 13;352(6287):840-4. doi: 10.1126/science.aaf0965. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验