Suppr超能文献

使用一种新的几何方法分析上位性相互作用和适应度景观。

Analysis of epistatic interactions and fitness landscapes using a new geometric approach.

作者信息

Beerenwinkel Niko, Pachter Lior, Sturmfels Bernd, Elena Santiago F, Lenski Richard E

机构信息

Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.

出版信息

BMC Evol Biol. 2007 Apr 13;7:60. doi: 10.1186/1471-2148-7-60.

Abstract

BACKGROUND

Understanding interactions between mutations and how they affect fitness is a central problem in evolutionary biology that bears on such fundamental issues as the structure of fitness landscapes and the evolution of sex. To date, analyses of fitness landscapes have focused either on the overall directional curvature of the fitness landscape or on the distribution of pairwise interactions. In this paper, we propose and employ a new mathematical approach that allows a more complete description of multi-way interactions and provides new insights into the structure of fitness landscapes.

RESULTS

We apply the mathematical theory of gene interactions developed by Beerenwinkel et al. to a fitness landscape for Escherichia coli obtained by Elena and Lenski. The genotypes were constructed by introducing nine mutations into a wild-type strain and constructing a restricted set of 27 double mutants. Despite the absence of mutants higher than second order, our analysis of this genotypic space points to previously unappreciated gene interactions, in addition to the standard pairwise epistasis. Our analysis confirms Elena and Lenski's inference that the fitness landscape is complex, so that an overall measure of curvature obscures a diversity of interaction types. We also demonstrate that some mutations contribute disproportionately to this complexity. In particular, some mutations are systematically better than others at mixing with other mutations. We also find a strong correlation between epistasis and the average fitness loss caused by deleterious mutations. In particular, the epistatic deviations from multiplicative expectations tend toward more positive values in the context of more deleterious mutations, emphasizing that pairwise epistasis is a local property of the fitness landscape. Finally, we determine the geometry of the fitness landscape, which reflects many of these biologically interesting features.

CONCLUSION

A full description of complex fitness landscapes requires more information than the average curvature or the distribution of independent pairwise interactions. We have proposed a mathematical approach that, in principle, allows a complete description and, in practice, can suggest new insights into the structure of real fitness landscapes. Our analysis emphasizes the value of non-independent genotypes for these inferences.

摘要

背景

理解突变之间的相互作用以及它们如何影响适应性是进化生物学中的核心问题,这与适应性景观的结构和性别的进化等基本问题相关。迄今为止,对适应性景观的分析要么集中在适应性景观的整体方向曲率上,要么集中在成对相互作用的分布上。在本文中,我们提出并采用了一种新的数学方法,该方法能够更完整地描述多向相互作用,并为适应性景观的结构提供新的见解。

结果

我们将Beerenwinkel等人开发的基因相互作用数学理论应用于Elena和Lenski获得的大肠杆菌适应性景观。通过将九个突变引入野生型菌株并构建一组受限的27个双突变体来构建基因型。尽管没有高于二阶的突变体,但我们对这个基因型空间的分析除了标准的成对上位性之外,还指出了以前未被认识到的基因相互作用。我们的分析证实了Elena和Lenski的推断,即适应性景观是复杂的,因此曲率的整体度量掩盖了相互作用类型的多样性。我们还证明,一些突变对这种复杂性的贡献不成比例。特别是,一些突变在与其他突变混合时系统地比其他突变更好。我们还发现上位性与有害突变引起的平均适应性损失之间存在很强的相关性。特别是,在更有害的突变背景下,与乘法预期的上位性偏差倾向于更正值,强调成对上位性是适应性景观的局部属性。最后,我们确定了适应性景观的几何形状,它反映了许多这些生物学上有趣的特征。

结论

对复杂适应性景观的完整描述需要比平均曲率或独立成对相互作用的分布更多的信息。我们提出了一种数学方法,原则上允许进行完整描述,并且在实践中可以为真实适应性景观的结构提供新的见解。我们的分析强调了非独立基因型在这些推断中的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a4c/1865543/b196fa4111a3/1471-2148-7-60-1.jpg

相似文献

1
Analysis of epistatic interactions and fitness landscapes using a new geometric approach.
BMC Evol Biol. 2007 Apr 13;7:60. doi: 10.1186/1471-2148-7-60.
2
Predictable properties of fitness landscapes induced by adaptational tradeoffs.
Elife. 2020 May 19;9:e55155. doi: 10.7554/eLife.55155.
3
Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
J Theor Biol. 2016 May 7;396:132-43. doi: 10.1016/j.jtbi.2016.01.037. Epub 2016 Feb 20.
4
Cluster partitions and fitness landscapes of the Drosophila fly microbiome.
J Math Biol. 2019 Aug;79(3):861-899. doi: 10.1007/s00285-019-01381-0. Epub 2019 May 17.
5
Properties of selected mutations and genotypic landscapes under Fisher's geometric model.
Evolution. 2014 Dec;68(12):3537-54. doi: 10.1111/evo.12545. Epub 2014 Nov 17.
6
Should evolutionary geneticists worry about higher-order epistasis?
Curr Opin Genet Dev. 2013 Dec;23(6):700-7. doi: 10.1016/j.gde.2013.10.007. Epub 2013 Nov 27.
7
The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.
PLoS Genet. 2013 Apr;9(4):e1003426. doi: 10.1371/journal.pgen.1003426. Epub 2013 Apr 4.
8
Global epistasis on fitness landscapes.
Philos Trans R Soc Lond B Biol Sci. 2023 May 22;378(1877):20220053. doi: 10.1098/rstb.2022.0053. Epub 2023 Apr 3.
9
Negative epistasis between beneficial mutations in an evolving bacterial population.
Science. 2011 Jun 3;332(6034):1193-6. doi: 10.1126/science.1203801.
10
On the deformability of an empirical fitness landscape by microbial evolution.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11286-11291. doi: 10.1073/pnas.1808485115. Epub 2018 Oct 15.

引用本文的文献

3
Resolving discrepancies between chimeric and multiplicative measures of higher-order epistasis.
Nat Commun. 2025 Feb 17;16(1):1711. doi: 10.1038/s41467-025-56986-5.
4
Master regulators of biological systems in higher dimensions.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2300634120. doi: 10.1073/pnas.2300634120. Epub 2023 Dec 14.
5
Expanding evolutionary theories of ageing to better account for symbioses and interactions throughout the Web of Life.
Ageing Res Rev. 2023 Aug;89:101982. doi: 10.1016/j.arr.2023.101982. Epub 2023 Jun 13.
6
Getting higher on rugged landscapes: Inversion mutations open access to fitter adaptive peaks in NK fitness landscapes.
PLoS Comput Biol. 2022 Oct 31;18(10):e1010647. doi: 10.1371/journal.pcbi.1010647. eCollection 2022 Oct.
7
Non-additive microbial community responses to environmental complexity.
Nat Commun. 2021 Apr 22;12(1):2365. doi: 10.1038/s41467-021-22426-3.
8
Epistasis between antibiotic tolerance, persistence, and resistance mutations.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14734-14739. doi: 10.1073/pnas.1906169116. Epub 2019 Jul 1.
9
Cluster partitions and fitness landscapes of the Drosophila fly microbiome.
J Math Biol. 2019 Aug;79(3):861-899. doi: 10.1007/s00285-019-01381-0. Epub 2019 May 17.
10
Long-term evolution on complex fitness landscapes when mutation is weak.
Heredity (Edinb). 2018 Nov;121(5):449-465. doi: 10.1038/s41437-018-0142-6. Epub 2018 Sep 19.

本文引用的文献

1
TEST OF INTERACTION BETWEEN GENETIC MARKERS THAT AFFECT FITNESS IN ASPERGILLUS NIGER.
Evolution. 1997 Oct;51(5):1499-1505. doi: 10.1111/j.1558-5646.1997.tb01473.x.
3
Epistasis correlates to genomic complexity.
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14402-5. doi: 10.1073/pnas.0604543103. Epub 2006 Sep 18.
4
In silico predicted robustness of viroid RNA secondary structures. II. Interaction between mutation pairs.
Mol Biol Evol. 2006 Nov;23(11):2123-30. doi: 10.1093/molbev/msl083. Epub 2006 Aug 10.
5
Evolutionary potential of a duplicated repressor-operator pair: simulating pathways using mutation data.
PLoS Comput Biol. 2006 May;2(5):e58. doi: 10.1371/journal.pcbi.0020058. Epub 2006 May 26.
6
Sexual reproduction reshapes the genetic architecture of digital organisms.
Proc Biol Sci. 2006 Feb 22;273(1585):457-64. doi: 10.1098/rspb.2005.3338.
7
Darwinian evolution can follow only very few mutational paths to fitter proteins.
Science. 2006 Apr 7;312(5770):111-4. doi: 10.1126/science.1123539.
8
Effect of varying epistasis on the evolution of recombination.
Genetics. 2006 Jun;173(2):589-97. doi: 10.1534/genetics.105.053108. Epub 2006 Mar 17.
9
The biochemical architecture of an ancient adaptive landscape.
Science. 2005 Oct 21;310(5747):499-501. doi: 10.1126/science.1115649.
10
The rate of compensatory mutation in the DNA bacteriophage phiX174.
Genetics. 2005 Jul;170(3):989-99. doi: 10.1534/genetics.104.039438. Epub 2005 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验