Beerenwinkel Niko, Pachter Lior, Sturmfels Bernd, Elena Santiago F, Lenski Richard E
Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.
BMC Evol Biol. 2007 Apr 13;7:60. doi: 10.1186/1471-2148-7-60.
Understanding interactions between mutations and how they affect fitness is a central problem in evolutionary biology that bears on such fundamental issues as the structure of fitness landscapes and the evolution of sex. To date, analyses of fitness landscapes have focused either on the overall directional curvature of the fitness landscape or on the distribution of pairwise interactions. In this paper, we propose and employ a new mathematical approach that allows a more complete description of multi-way interactions and provides new insights into the structure of fitness landscapes.
We apply the mathematical theory of gene interactions developed by Beerenwinkel et al. to a fitness landscape for Escherichia coli obtained by Elena and Lenski. The genotypes were constructed by introducing nine mutations into a wild-type strain and constructing a restricted set of 27 double mutants. Despite the absence of mutants higher than second order, our analysis of this genotypic space points to previously unappreciated gene interactions, in addition to the standard pairwise epistasis. Our analysis confirms Elena and Lenski's inference that the fitness landscape is complex, so that an overall measure of curvature obscures a diversity of interaction types. We also demonstrate that some mutations contribute disproportionately to this complexity. In particular, some mutations are systematically better than others at mixing with other mutations. We also find a strong correlation between epistasis and the average fitness loss caused by deleterious mutations. In particular, the epistatic deviations from multiplicative expectations tend toward more positive values in the context of more deleterious mutations, emphasizing that pairwise epistasis is a local property of the fitness landscape. Finally, we determine the geometry of the fitness landscape, which reflects many of these biologically interesting features.
A full description of complex fitness landscapes requires more information than the average curvature or the distribution of independent pairwise interactions. We have proposed a mathematical approach that, in principle, allows a complete description and, in practice, can suggest new insights into the structure of real fitness landscapes. Our analysis emphasizes the value of non-independent genotypes for these inferences.
理解突变之间的相互作用以及它们如何影响适应性是进化生物学中的核心问题,这与适应性景观的结构和性别的进化等基本问题相关。迄今为止,对适应性景观的分析要么集中在适应性景观的整体方向曲率上,要么集中在成对相互作用的分布上。在本文中,我们提出并采用了一种新的数学方法,该方法能够更完整地描述多向相互作用,并为适应性景观的结构提供新的见解。
我们将Beerenwinkel等人开发的基因相互作用数学理论应用于Elena和Lenski获得的大肠杆菌适应性景观。通过将九个突变引入野生型菌株并构建一组受限的27个双突变体来构建基因型。尽管没有高于二阶的突变体,但我们对这个基因型空间的分析除了标准的成对上位性之外,还指出了以前未被认识到的基因相互作用。我们的分析证实了Elena和Lenski的推断,即适应性景观是复杂的,因此曲率的整体度量掩盖了相互作用类型的多样性。我们还证明,一些突变对这种复杂性的贡献不成比例。特别是,一些突变在与其他突变混合时系统地比其他突变更好。我们还发现上位性与有害突变引起的平均适应性损失之间存在很强的相关性。特别是,在更有害的突变背景下,与乘法预期的上位性偏差倾向于更正值,强调成对上位性是适应性景观的局部属性。最后,我们确定了适应性景观的几何形状,它反映了许多这些生物学上有趣的特征。
对复杂适应性景观的完整描述需要比平均曲率或独立成对相互作用的分布更多的信息。我们提出了一种数学方法,原则上允许进行完整描述,并且在实践中可以为真实适应性景观的结构提供新的见解。我们的分析强调了非独立基因型在这些推断中的价值。