Suppr超能文献

一种用于估计响应时间分布的分层模型。

A hierarchical model for estimating response time distributions.

作者信息

Rouder Jeffrey N, Lu Jun, Speckman Paul, Sun Dongchu, Jiang Yi

机构信息

Department of Psychological Sciences, 210 McAlester Hall, University of Missouri, Columbia, MO 65211, USA.

出版信息

Psychon Bull Rev. 2005 Apr;12(2):195-223. doi: 10.3758/bf03257252.

Abstract

We present a statistical model for inference with response time (RT) distributions. The model has the following features. First, it provides a means of estimating the shape, scale, and location (shift) of RT distributions. Second, it is hierarchical and models between-subjects and within-subjects variability simultaneously. Third, inference with the model is Bayesian and provides a principled and efficient means of pooling information across disparate data from different individuals. Because the model efficiently pools information across individuals, it is particularly well suited for those common cases in which the researcher collects a limited number of observations from several participants. Monte Carlo simulations reveal that the hierarchical Bayesian model provides more accurate estimates than several popular competitors do. We illustrate the model by providing an analysis of the symbolic distance effect in which participants can more quickly ascertain the relationship between nonadjacent digits than that between adjacent digits.

摘要

我们提出了一种用于响应时间(RT)分布推断的统计模型。该模型具有以下特点。首先,它提供了一种估计RT分布的形状、尺度和位置(偏移)的方法。其次,它是分层的,同时对个体间和个体内的变异性进行建模。第三,基于该模型的推断是贝叶斯式的,并提供了一种有原则且有效的方法来整合来自不同个体的不同数据中的信息。由于该模型能有效地整合个体间的信息,它特别适用于研究人员从多个参与者那里收集有限数量观测值的常见情况。蒙特卡罗模拟表明,分层贝叶斯模型比几个流行的竞争模型能提供更准确的估计。我们通过对符号距离效应的分析来说明该模型,在符号距离效应中,参与者能够比判断相邻数字之间的关系更快地确定不相邻数字之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验