Suppr超能文献

酿酒酵母在持续热应激时蛋白激酶C1途径的激活是由海藻糖积累导致细胞内渗透压升高所触发的。

Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation.

作者信息

Mensonides Femke I C, Brul Stanley, Klis Frans M, Hellingwerf Klaas J, Teixeira de Mattos M Joost

机构信息

Swammerdam Institute of Life Sciences, Department of Molecular Microbial Physiology, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.

出版信息

Appl Environ Microbiol. 2005 Aug;71(8):4531-8. doi: 10.1128/AEM.71.8.4531-4538.2005.

Abstract

This paper reports on physiological and molecular responses of Saccharomyces cerevisiae to heat stress conditions. We observed that within a very narrow range of culture temperatures, a shift from exponential growth to growth arrest and ultimately to cell death occurred. A detailed analysis was carried out of the accumulation of trehalose and the activation of the protein kinase C1 (PKC1) (cell integrity) pathway in both glucose- and ethanol-grown cells upon temperature upshifts within this narrow range of growth temperatures. It was observed that the PKC1 pathway was hardly activated in a tps1 mutant that is unable to accumulate any trehalose. Furthermore, it was observed that an increase of the extracellular osmolarity during a continuous heat stress prevented the activation of the pathway. The results of these analyses support our hypothesis that under heat stress conditions the activation of the PKC1 pathway is triggered by an increase in intracellular osmolarity, due to the accumulation of trehalose, rather than by the increase in temperature as such.

摘要

本文报道了酿酒酵母对热应激条件的生理和分子反应。我们观察到,在非常狭窄的培养温度范围内,会发生从指数生长到生长停滞并最终导致细胞死亡的转变。针对在此狭窄生长温度范围内温度升高时,葡萄糖培养和乙醇培养的细胞中海藻糖的积累以及蛋白激酶C1(PKC1)(细胞完整性)途径的激活进行了详细分析。结果发现,在无法积累任何海藻糖的tps1突变体中,PKC1途径几乎未被激活。此外,还观察到在持续热应激期间细胞外渗透压的增加会阻止该途径的激活。这些分析结果支持了我们的假设,即在热应激条件下,PKC1途径的激活是由海藻糖积累导致的细胞内渗透压升高触发的,而非温度本身的升高。

相似文献

2
Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively.
FEBS Lett. 1995 Dec 27;377(3):457-60. doi: 10.1016/0014-5793(95)01392-X.
5
Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses.
J Biosci Bioeng. 2010 Mar;109(3):262-6. doi: 10.1016/j.jbiosc.2009.08.500. Epub 2009 Sep 29.
6
Protective role of trehalose during heat stress in Saccharomyces cerevisiae.
Cryobiology. 1993 Dec;30(6):591-6. doi: 10.1006/cryo.1993.1061.
7
Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae.
FEMS Yeast Res. 2004 Sep;4(8):773-87. doi: 10.1016/j.femsyr.2004.05.005.
8
Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast.
FEMS Yeast Res. 2006 Sep;6(6):902-13. doi: 10.1111/j.1567-1364.2006.00066.x.

引用本文的文献

2
Deciphering cell wall sensors enabling the construction of robust P. pastoris for single-cell protein production.
Biotechnol Biofuels Bioprod. 2023 Nov 17;16(1):178. doi: 10.1186/s13068-023-02428-7.
3
The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts.
Front Microbiol. 2022 Jul 28;13:953479. doi: 10.3389/fmicb.2022.953479. eCollection 2022.
4
Lipids and Trehalose Actively Cooperate in Heat Stress Management of .
Int J Mol Sci. 2021 Dec 9;22(24):13272. doi: 10.3390/ijms222413272.
5
CgSTE11 mediates cross tolerance to multiple environmental stressors in Candida glabrata.
Sci Rep. 2019 Nov 19;9(1):17036. doi: 10.1038/s41598-019-53593-5.
6
Multiscale effects of heating and cooling on genes and gene networks.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10797-E10806. doi: 10.1073/pnas.1810858115. Epub 2018 Oct 19.
7
Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway.
Sci Rep. 2018 Oct 11;8(1):15168. doi: 10.1038/s41598-018-33203-6.
8
Absolute protein quantification of the yeast chaperome under conditions of heat shock.
Proteomics. 2016 Aug;16(15-16):2128-40. doi: 10.1002/pmic.201500503. Epub 2016 Jul 22.
9
Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes.
World J Microbiol Biotechnol. 2011 Jun;27(6):1281-96. doi: 10.1007/s11274-010-0584-3. Epub 2010 Oct 16.

本文引用的文献

2
The metabolic response of Saccharomyces cerevisiae to continuous heat stress.
Mol Biol Rep. 2002;29(1-2):103-6. doi: 10.1023/a:1020392805411.
3
Osmotic stress signaling and osmoadaptation in yeasts.
Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72. doi: 10.1128/MMBR.66.2.300-372.2002.
6
Glucose signaling in yeast is partially mimicked by galactose and does not require the Tps1 protein.
Mol Cell Biol Res Commun. 1999 Apr;1(1):52-8. doi: 10.1006/mcbr.1999.0112.
7
Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae.
J Bacteriol. 1999 Jan;181(2):396-400. doi: 10.1128/JB.181.2.396-400.1999.
8
MAP kinase pathways in the yeast Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 1998 Dec;62(4):1264-300. doi: 10.1128/MMBR.62.4.1264-1300.1998.
9
Multiple effects of trehalose on protein folding in vitro and in vivo.
Mol Cell. 1998 Apr;1(5):639-48. doi: 10.1016/s1097-2765(00)80064-7.
10
Stress tolerance: the key to effective strains of industrial baker's yeast.
Nat Biotechnol. 1997 Dec;15(13):1351-7. doi: 10.1038/nbt1297-1351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验