Koenig T, Studer D, Hubl D, Melie L, Strik W K
Department of Psychiatric Neurophysiology, University Hospital of Clinical Psychiatry Bern, Bolligenstr. 111, 3000 Bern 60, Switzerland.
Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1015-23. doi: 10.1098/rstb.2005.1649.
We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks.
我们概述了将多通道自发脑电图(EEG)分解为时间模式集和地形分布的不同方法。这里介绍的所有方法都将头皮电场视为空间中的基本分析实体。在时间方面,这些方法的分辨率介于毫秒(时域分析)、亚秒(时域和频域分析)和秒(频域分析)之间。对于这些方法中的任何一种,我们都表明,大部分数据可以由少量的地形分布来解释。从物理意义上讲,这意味着产生这些地形之一的脑区必定以共同相位处于活跃状态。如果几个脑区同时以相同频率产生EEG信号,它们很倾向于以同步模式进行。几个例子(包括EEG与功能磁共振成像(fMRI)相结合)以及对文献的选择性综述说明了这一观点。我们从不同脑区通过同步振荡形成短暂结合的角度讨论了这些发现,这可能构成一种形成瞬态功能性神经认知网络的机制。