Mayer Peter, Berthier Ludovic, Garrahan Juan P, Sollich Peter
Department of Mathematics, King's College, Strand, London WC2R 2LS, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 2):016116. doi: 10.1103/PhysRevE.68.016116. Epub 2003 Jul 21.
We investigate the relation between two-time multispin correlation and response functions in the nonequilibrium critical dynamics of Ising models in d=1 and d=2 spatial dimensions. In these nonequilibrium situations, the fluctuation-dissipation theorem (FDT) is not satisfied. We find FDT "violations" qualitatively similar to those reported in various glassy materials, but quantitatively dependent on the chosen observable, in contrast to the results obtained in infinite-range glass models. Nevertheless, all FDT violations can be understood by considering separately the contributions from large wave vectors, which are at quasiequilibrium and obey the FDT, and from small wave vectors where a generalized FDT holds with a nontrivial fluctuation-dissipation ratio X infinity. In d=1, we get X(infinity)=1/2 for spin observables, which measure the orientation of domains, while X(infinity)=0 for observables that are sensitive to the domain-wall motion. Numerical simulations in d=2 reveal a unique X infinity approximately equal 0.34 for all observables. Measurement protocols for X infinity are discussed in detail. Our results suggest that the definition of an effective temperature T(eff)=T/X(infinity) for large length scales is generically possible in nonequilibrium critical dynamics.
我们研究了一维(d = 1)和二维(d = 2)空间维度的伊辛模型非平衡临界动力学中双时多自旋关联与响应函数之间的关系。在这些非平衡情形下,涨落耗散定理(FDT)并不成立。我们发现FDT的“违背”在定性上与各种玻璃态材料中报道的情况相似,但在定量上依赖于所选的可观测量,这与无限程玻璃模型中得到的结果不同。然而,通过分别考虑来自处于准平衡且服从FDT的大波矢的贡献,以及来自具有非平凡涨落耗散比X∞的广义FDT成立的小波矢的贡献,可以理解所有FDT的违背情况。在d = 1时,对于测量畴取向的自旋可观测量,我们得到X(∞)=1/2,而对于对畴壁运动敏感的可观测量,X(∞)=0。二维(d = 2)的数值模拟表明,对于所有可观测量,存在一个唯一的X∞约等于0.34。我们详细讨论了X∞的测量方案。我们的结果表明,在非平衡临界动力学中,对于大长度尺度,通常可以定义一个有效温度T(eff)=T/X(∞)。