Lecomte V, Appert-Rolland C, van Wijland F
Laboratoire de Physique Théorique (CNRS UMR8627), Bâtiment 210, Université Paris-Sud, 91405 Orsay cedex, France.
Phys Rev Lett. 2005 Jul 1;95(1):010601. doi: 10.1103/PhysRevLett.95.010601. Epub 2005 Jun 27.
We present a general approach for computing the dynamic partition function of a continuous-time Markov process. The Ruelle topological pressure is identified with the large deviation function of a physical observable. We construct for the first time a corresponding finite Kolmogorov-Sinai entropy for these processes. Then, as an example, the latter is computed for a symmetric exclusion process. We further present the first exact calculation of the topological pressure for an N-body stochastic interacting system, namely, an infinite-range Ising model endowed with spin-flip dynamics. Expressions for the Kolmogorov-Sinai and the topological entropies follow.
我们提出了一种计算连续时间马尔可夫过程动态配分函数的通用方法。吕埃勒拓扑压力与物理可观测量的大偏差函数相关联。我们首次为这些过程构建了相应的有限柯尔莫哥洛夫 - 西奈熵。然后,作为一个例子,计算了对称排斥过程的后者。我们还给出了N体随机相互作用系统拓扑压力的首次精确计算,即具有自旋翻转动力学的无限范围伊辛模型。接着得出了柯尔莫哥洛夫 - 西奈熵和拓扑熵的表达式。