Suppr超能文献

近似马尔可夫链。

Approximating Markov chains.

作者信息

Pincus S M

出版信息

Proc Natl Acad Sci U S A. 1992 May 15;89(10):4432-6. doi: 10.1073/pnas.89.10.4432.

Abstract

A common framework of finite state approximating Markov chains is developed for discrete time deterministic and stochastic processes. Two types of approximating chains are introduced: (i) those based on stationary conditional probabilities (time averaging) and (ii) transient, based on the percentage of the Lebesgue measure of the image of cells intersecting any given cell. For general dynamical systems, stationary measures for both approximating chains converge weakly to stationary measures for the true process as partition width converges to 0. From governing equations, transient chains and resultant approximations of all n-time unit probabilities can be computed analytically, despite typically singular true-process stationary measures (no density function). Transition probabilities between cells account explicitly for correlation between successive time increments. For dynamical systems defined by uniformly convergent maps on a compact set (e.g., logistic, Henon maps), there also is weak continuity with a control parameter. Thus all moments are continuous with parameter change, across bifurcations and chaotic regimes. Approximate entropy is seen as the information-theoretic rate of entropy for approximating Markov chains and is suggested as a parameter for turbulence; a discontinuity in the Kolmogorov-Sinai entropy implies that in the physical world, some measure of coarse graining in a mixing parameter is required.

摘要

为离散时间确定性和随机过程开发了一种有限状态逼近马尔可夫链的通用框架。引入了两种类型的逼近链:(i)基于平稳条件概率(时间平均)的链,以及(ii)基于与任何给定单元相交的单元图像的勒贝格测度百分比的瞬态链。对于一般动力系统,随着划分宽度收敛到0,两种逼近链的平稳测度都弱收敛到真实过程的平稳测度。从控制方程可以解析地计算瞬态链以及所有n时间单位概率的结果近似值,尽管真实过程的平稳测度通常是奇异的(没有密度函数)。单元之间的转移概率明确考虑了连续时间增量之间的相关性。对于由紧致集上的一致收敛映射定义的动力系统(例如,逻辑斯谛映射、亨农映射),对于控制参数也存在弱连续性。因此,在跨越分岔和混沌区域时,所有矩都随参数变化而连续。近似熵被视为逼近马尔可夫链的信息论熵率,并被建议作为湍流的一个参数;柯尔莫哥洛夫-西奈熵的不连续性意味着在物理世界中,需要对混合参数进行某种粗粒化度量。

相似文献

1
Approximating Markov chains.
Proc Natl Acad Sci U S A. 1992 May 15;89(10):4432-6. doi: 10.1073/pnas.89.10.4432.
2
3
Chaotic properties of systems with Markov dynamics.
Phys Rev Lett. 2005 Jul 1;95(1):010601. doi: 10.1103/PhysRevLett.95.010601. Epub 2005 Jun 27.
5
Computation of entropy and Lyapunov exponent by a shift transform.
Chaos. 2015 Oct;25(10):103110. doi: 10.1063/1.4930956.
6
Regularities unseen, randomness observed: levels of entropy convergence.
Chaos. 2003 Mar;13(1):25-54. doi: 10.1063/1.1530990.
7
Stochastic Dynamics through Hierarchically Embedded Markov Chains.
Phys Rev Lett. 2017 Feb 3;118(5):058301. doi: 10.1103/PhysRevLett.118.058301. Epub 2017 Feb 1.
8
Nearly reducible finite Markov chains: Theory and algorithms.
J Chem Phys. 2021 Oct 14;155(14):140901. doi: 10.1063/5.0060978.
9
Geometric fluid approximation for general continuous-time Markov chains.
Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190100. doi: 10.1098/rspa.2019.0100. Epub 2019 Sep 25.
10
Introducing User-Prescribed Constraints in Markov Chains for Nonlinear Dimensionality Reduction.
Neural Comput. 2019 May;31(5):980-997. doi: 10.1162/neco_a_01184. Epub 2019 Mar 18.

引用本文的文献

1
Approximate Entropy and Sample Entropy: A Comprehensive Tutorial.
Entropy (Basel). 2019 May 28;21(6):541. doi: 10.3390/e21060541.
2
Dynamic disorder in simple enzymatic reactions induces stochastic amplification of substrate.
J R Soc Interface. 2017 Jul;14(132). doi: 10.1098/rsif.2017.0311.
3
Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.
PLoS One. 2014 Dec 9;9(12):e114577. doi: 10.1371/journal.pone.0114577. eCollection 2014.
5
Reliability and accuracy of heart rate variability metrics versus ECG segment duration.
Med Biol Eng Comput. 2006 Sep;44(9):747-56. doi: 10.1007/s11517-006-0097-2. Epub 2006 Aug 22.
9

本文引用的文献

1
Approximate entropy as a measure of system complexity.
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301. doi: 10.1073/pnas.88.6.2297.
2
Nearly one dimensional dynamics in an epidemic.
J Theor Biol. 1985 Jan 21;112(2):403-27. doi: 10.1016/s0022-5193(85)80294-0.
4
Aging and the complexity of cardiovascular dynamics.
Biophys J. 1991 Apr;59(4):945-9. doi: 10.1016/S0006-3495(91)82309-8.
5
A regularity statistic for medical data analysis.
J Clin Monit. 1991 Oct;7(4):335-45. doi: 10.1007/BF01619355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验