Matsuoka Chihiro, Hiraide Koichi
Department of Physics, Graduate School of Science and Technology, Ehime University, Matsuyama, Ehime 790-8577, Japan.
Department of Mathematics, Graduate School of Science and Technology, Ehime University, Matsuyama, Ehime 790-8577, Japan.
Chaos. 2015 Oct;25(10):103110. doi: 10.1063/1.4930956.
We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.
我们提出了一种新颖的计算方法,利用移位变换来估计非线性映射的拓扑熵和李雅普诺夫指数。与通过马尔可夫分割计算周期轨道或符号动力学方法不同,这里提出的方法在计算和数学领域中计算这些量时不需要任何特殊技术。尽管我们的方法很简单,但它不仅可以准确地捕捉混沌区域,还能捕捉到非混沌区域(窗口区域),这些区域在物理上很重要,但(勒贝格)测度为零,通常难以计算或观测。此外,结果表明,西奈 - 吕埃勒 - 鲍恩测度(物理测度)的柯尔莫哥洛夫 - 西奈熵与拓扑熵一致。