Suppr超能文献

Effect of exposure concentration on the disposition of inhaled butoxyethanol by F344 rats.

作者信息

Sabourin P J, Medinsky M A, Birnbaum L S, Griffith W C, Henderson R F

机构信息

Inhalation Toxicology Research Institute, Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico 87185.

出版信息

Toxicol Appl Pharmacol. 1992 Jun;114(2):232-8. doi: 10.1016/0041-008x(92)90073-2.

Abstract

The glycol ethers are a class of solvents widely used due to their range of vapor pressures and miscibility in aqueous and organic media. Butoxyethanol (BE) causes anemia and lowered hematocrits in rats due to direct hemolysis of red blood cells. Exposure to BE is most likely to occur by dermal contact or by inhalation. In this paper, we report the uptake, metabolism, and excretion of BE following 6-hr exposure at different inhaled concentrations. The uptake and metabolism of BE were essentially linear up to 438 ppm. The majority of the inhaled butoxy-[14C]ethanol was eliminated in the urine with butoxyacetic acid (BAA) being the major urinary metabolite, accompanied by lesser amounts of ethylene glycol and BE glucuronide. A small proportion (5-8%) of the retained BE was exhaled as 14CO2. Most (greater than 80%) of the [14C]BE-derived material in blood was in the plasma. BAA was the major metabolite of BE in plasma. Ratios of ethylene glycol to BAA in plasma were higher than those in urine. The BE-derived 14C in plasma rapidly became associated with the acid-precipitable (protein) fraction, probably due to binding of metabolites to proteins or incorporation of the BE metabolites into the carbon pool. These results indicate that, in rats, overall metabolism of BE to BAA, the hemolytic metabolite, was linearly related to the exposure concentration up to a concentration that caused severe toxicity (438 ppm). Assuming that the toxicity of inhaled BE is directly proportional to the formation of BAA, the toxicity of inhaled BE can be expected to be linearly related to the exposure concentration up to exposure concentrations that cause mortality.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验