Bush Keith, Knight James, Anderson Charles
Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA.
Neural Netw. 2005 Jun-Jul;18(5-6):488-96. doi: 10.1016/j.neunet.2005.06.038.
Development of automated methods for fitting computational models to observed biological data is an important challenge of neural modeling. Previous work has focused on generalized search techniques combined with distance measures tuned to specific neural morphologies. We propose general analysis techniques to guide construction of distance measures across a broader range of cell types. Specifically, we evaluate the use of multiple external stimuli to evoke characteristic behaviors of underlying active channel densities on a simple three-compartment model. We also examine the use of frequency analysis to smooth search space distortions induced by temporal shifts in recorded voltage traces. We propose a novel method of parameter optimization that is characterized by linear regression over the conductance densities using channel permissiveness as a basis of ionic current. We derive this method and demonstrate, given known anatomy and kinetics, it will solve all conductance densities in an N compartment model given N spatially distinct membrane potential traces with minimal error. We compare the regression method with the covariance matrix adaptation evolutionary strategy (CMA-ES) over a two-compartment cortical neuron and empirically show that regression over electrotonic partitions solves the cortical model near-optimally. We also show that electronic partitioning significantly improves search performance of CMA-ES on the cortical model.
开发将计算模型与观测到的生物学数据进行拟合的自动化方法是神经建模的一项重要挑战。先前的工作主要集中在广义搜索技术与针对特定神经形态调整的距离度量相结合。我们提出了通用分析技术,以指导在更广泛的细胞类型范围内构建距离度量。具体而言,我们在一个简单的三室模型上评估使用多种外部刺激来诱发潜在活动通道密度的特征行为。我们还研究了使用频率分析来平滑由记录的电压轨迹中的时间偏移引起的搜索空间扭曲。我们提出了一种新颖的参数优化方法,其特征是在以通道允许性作为离子电流基础的情况下,对电导密度进行线性回归。我们推导了该方法,并证明在已知解剖结构和动力学的情况下,给定N个空间上不同的膜电位轨迹,它将以最小误差求解N室模型中的所有电导密度。我们在一个两室皮质神经元上比较了回归方法与协方差矩阵自适应进化策略(CMA - ES),并通过实验表明,基于电紧张分区的回归能近乎最优地求解皮质模型。我们还表明,电紧张分区显著提高了CMA - ES在皮质模型上的搜索性能。