Suppr超能文献

Neurofitter:一个适用于多种电生理神经元模型的参数调整软件包。

Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models.

出版信息

Front Neuroinform. 2007 Nov 2;1:1. doi: 10.3389/neuro.11.001.2007. eCollection 2007.

Abstract

The increase in available computational power and the higher quality of experimental recordings have turned the tuning of neuron model parameters into a problem that can be solved by automatic global optimization algorithms. Neurofitter is a software tool that interfaces existing neural simulation software and sophisticated optimization algorithms with a new way to compute the error measure. This error measure represents how well a given parameter set is able to reproduce the experimental data. It is based on the phase-plane trajectory density method, which is insensitive to small phase differences between model and data. Neurofitter enables the effortless combination of many different time-dependent data traces into the error measure, allowing the neuroscientist to focus on what are the seminal properties of the model.We show results obtained by applying Neurofitter to a simple single compartmental model and a complex multi-compartmental Purkinje cell (PC) model. These examples show that the method is able to solve a variety of tuning problems and demonstrate details of its practical application.

摘要

可用计算能力的增加和实验记录质量的提高,使得神经元模型参数的调整成为一个可以通过自动全局优化算法解决的问题。Neurofitter 是一个软件工具,它将现有的神经模拟软件和复杂的优化算法与一种新的计算误差度量的方法结合在一起。该误差度量表示给定参数集能够再现实验数据的程度。它基于相平面轨迹密度方法,该方法对模型和数据之间的小相位差不敏感。Neurofitter 允许将许多不同的时变数据轨迹轻松地组合到误差度量中,从而使神经科学家能够专注于模型的主要特性。我们展示了将 Neurofitter 应用于简单的单室模型和复杂的多室浦肯野细胞 (PC) 模型所获得的结果。这些例子表明,该方法能够解决各种调整问题,并展示其实际应用的细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11fa/2525995/d784ddedad62/fninf-01-001-g001.jpg

相似文献

1
Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models.
Front Neuroinform. 2007 Nov 2;1:1. doi: 10.3389/neuro.11.001.2007. eCollection 2007.
2
Automated neuron model optimization techniques: a review.
Biol Cybern. 2008 Nov;99(4-5):241-51. doi: 10.1007/s00422-008-0257-6. Epub 2008 Nov 15.
3
Automatic bi-objective parameter tuning for inverse planning of high-dose-rate prostate brachytherapy.
Phys Med Biol. 2020 Apr 2;65(7):075009. doi: 10.1088/1361-6560/ab7362.
5
A flexible, interactive software tool for fitting the parameters of neuronal models.
Front Neuroinform. 2014 Jul 10;8:63. doi: 10.3389/fninf.2014.00063. eCollection 2014.
6
Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox.
Biophys Chem. 2021 Dec;279:106682. doi: 10.1016/j.bpc.2021.106682. Epub 2021 Sep 29.
7
MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling.
BMC Bioinformatics. 2022 Nov 1;23(1):455. doi: 10.1186/s12859-022-05009-x.
8
Automatic fitting of spiking neuron models to electrophysiological recordings.
Front Neuroinform. 2010 Mar 5;4:2. doi: 10.3389/neuro.11.002.2010. eCollection 2010.
9
Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types.
Front Neuroinform. 2018 Mar 13;12:8. doi: 10.3389/fninf.2018.00008. eCollection 2018.
10
Multi-Objective Optimization Tuning Framework for Kinetic Parameter Selection and Estimation.
Methods Mol Biol. 2022;2385:65-89. doi: 10.1007/978-1-0716-1767-0_4.

引用本文的文献

1
Evaluation and comparison of methods for neuronal parameter optimization using the Neuroptimus software framework.
PLoS Comput Biol. 2024 Dec 23;20(12):e1012039. doi: 10.1371/journal.pcbi.1012039. eCollection 2024 Dec.
2
Multimodal parameter spaces of a complex multi-channel neuron model.
Front Syst Neurosci. 2022 Oct 20;16:999531. doi: 10.3389/fnsys.2022.999531. eCollection 2022.
3
Black-box and surrogate optimization for tuning spiking neural models of striatum plasticity.
Front Neuroinform. 2022 Oct 20;16:1017222. doi: 10.3389/fninf.2022.1017222. eCollection 2022.
4
Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning.
Front Comput Neurosci. 2022 Sep 30;16:1017284. doi: 10.3389/fncom.2022.1017284. eCollection 2022.
5
Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models.
Front Neuroinform. 2022 Jun 17;16:882552. doi: 10.3389/fninf.2022.882552. eCollection 2022.
6
An electrodiffusive neuron-extracellular-glia model for exploring the genesis of slow potentials in the brain.
PLoS Comput Biol. 2021 Jul 16;17(7):e1008143. doi: 10.1371/journal.pcbi.1008143. eCollection 2021 Jul.
7
Xolotl: An Intuitive and Approachable Neuron and Network Simulator for Research and Teaching.
Front Neuroinform. 2018 Nov 26;12:87. doi: 10.3389/fninf.2018.00087. eCollection 2018.
8
Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types.
Front Neuroinform. 2018 Mar 13;12:8. doi: 10.3389/fninf.2018.00008. eCollection 2018.
9
Systematic generation of biophysically detailed models for diverse cortical neuron types.
Nat Commun. 2018 Feb 19;9(1):710. doi: 10.1038/s41467-017-02718-3.
10
Optimizing computer models of corticospinal neurons to replicate in vitro dynamics.
J Neurophysiol. 2017 Jan 1;117(1):148-162. doi: 10.1152/jn.00570.2016. Epub 2016 Oct 19.

本文引用的文献

1
A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data.
Front Neurosci. 2007 Oct 15;1(1):7-18. doi: 10.3389/neuro.01.1.1.001.2007. eCollection 2007 Nov.
2
The action potential in mammalian central neurons.
Nat Rev Neurosci. 2007 Jun;8(6):451-65. doi: 10.1038/nrn2148.
3
A parameter-space search algorithm tested on a Hodgkin-Huxley model.
Biol Cybern. 2007 Jun;96(6):625-34. doi: 10.1007/s00422-007-0156-2. Epub 2007 May 9.
4
Mapping function onto neuronal morphology.
J Neurophysiol. 2007 Jul;98(1):513-26. doi: 10.1152/jn.00865.2006. Epub 2007 Apr 11.
5
Global neuroinformatics: the International Neuroinformatics Coordinating Facility.
J Neurosci. 2007 Apr 4;27(14):3613-5. doi: 10.1523/JNEUROSCI.0558-07.2007.
6
Genetic algorithm for optimization and specification of a neuron model.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:4321-3. doi: 10.1109/IEMBS.2005.1615421.
7
Where's the beef ? Missing data in the information age.
Neuroinformatics. 2006 Winter;4(4):271-3. doi: 10.1385/NI:4:4:271.
8
The ups and downs of neuroscience shares.
Neuroinformatics. 2006 Summer;4(3):213-6. doi: 10.1385/NI:4:3:213.
9
Complex parameter landscape for a complex neuron model.
PLoS Comput Biol. 2006 Jul 21;2(7):e94. doi: 10.1371/journal.pcbi.0020094.
10
Variability, compensation and homeostasis in neuron and network function.
Nat Rev Neurosci. 2006 Jul;7(7):563-74. doi: 10.1038/nrn1949.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验