Suppr超能文献

详细单神经元模型的高效估计。

Efficient estimation of detailed single-neuron models.

作者信息

Huys Quentin J M, Ahrens Misha B, Paninski Liam

机构信息

Gatsby Computational Neuroscience Unit, University College London, UK.

出版信息

J Neurophysiol. 2006 Aug;96(2):872-90. doi: 10.1152/jn.00079.2006. Epub 2006 Apr 19.

Abstract

Biophysically accurate multicompartmental models of individual neurons have significantly advanced our understanding of the input-output function of single cells. These models depend on a large number of parameters that are difficult to estimate. In practice, they are often hand-tuned to match measured physiological behaviors, thus raising questions of identifiability and interpretability. We propose a statistical approach to the automatic estimation of various biologically relevant parameters, including 1) the distribution of channel densities, 2) the spatiotemporal pattern of synaptic input, and 3) axial resistances across extended dendrites. Recent experimental advances, notably in voltage-sensitive imaging, motivate us to assume access to: i) the spatiotemporal voltage signal in the dendrite and ii) an approximate description of the channel kinetics of interest. We show here that, given i and ii, parameters 1-3 can be inferred simultaneously by nonnegative linear regression; that this optimization problem possesses a unique solution and is guaranteed to converge despite the large number of parameters and their complex nonlinear interaction; and that standard optimization algorithms efficiently reach this optimum with modest computational and data requirements. We demonstrate that the method leads to accurate estimations on a wide variety of challenging model data sets that include up to about 10(4) parameters (roughly two orders of magnitude more than previously feasible) and describe how the method gives insights into the functional interaction of groups of channels.

摘要

单个神经元的生物物理精确多室模型极大地推进了我们对单细胞输入 - 输出功能的理解。这些模型依赖于大量难以估计的参数。在实际应用中,它们常常需要手动调整以匹配测量到的生理行为,从而引发了可识别性和可解释性的问题。我们提出一种统计方法来自动估计各种生物学相关参数,包括:1)通道密度分布;2)突触输入的时空模式;3)跨延伸树突的轴向电阻。近期的实验进展,特别是在电压敏感染成像方面,促使我们假设可以获取:i)树突中的时空电压信号;ii)感兴趣的通道动力学的近似描述。我们在此表明,给定i和ii,参数1 - 3可以通过非负线性回归同时推断出来;这个优化问题具有唯一解,并且尽管参数数量众多且它们之间存在复杂的非线性相互作用,但仍能保证收敛;标准优化算法能够以适度的计算和数据要求有效地达到这个最优解。我们证明该方法能够对各种具有挑战性的模型数据集进行准确估计,这些数据集包含多达约10⁴个参数(比以前可行的数量大约多两个数量级),并描述了该方法如何深入了解通道组的功能相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验