Van Geit W, De Schutter E, Achard P
Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 7542 Onna, Onna-Son, Okinawa, 904-0411, Japan.
Biol Cybern. 2008 Nov;99(4-5):241-51. doi: 10.1007/s00422-008-0257-6. Epub 2008 Nov 15.
The increase in complexity of computational neuron models makes the hand tuning of model parameters more difficult than ever. Fortunately, the parallel increase in computer power allows scientists to automate this tuning. Optimization algorithms need two essential components. The first one is a function that measures the difference between the output of the model with a given set of parameter and the data. This error function or fitness function makes the ranking of different parameter sets possible. The second component is a search algorithm that explores the parameter space to find the best parameter set in a minimal amount of time. In this review we distinguish three types of error functions: feature-based ones, point-by-point comparison of voltage traces and multi-objective functions. We then detail several popular search algorithms, including brute-force methods, simulated annealing, genetic algorithms, evolution strategies, differential evolution and particle-swarm optimization. Last, we shortly describe Neurofitter, a free software package that combines a phase-plane trajectory density fitness function with several search algorithms.
计算神经元模型复杂性的增加使得手动调整模型参数比以往任何时候都更加困难。幸运的是,计算机能力的同步提升使科学家能够将这种调整自动化。优化算法需要两个基本组件。第一个是一个函数,用于测量具有给定参数集的模型输出与数据之间的差异。这个误差函数或适应度函数使得对不同参数集进行排名成为可能。第二个组件是一种搜索算法,它探索参数空间以在最短时间内找到最佳参数集。在本综述中,我们区分了三种类型的误差函数:基于特征的误差函数、电压轨迹的逐点比较和多目标函数。然后,我们详细介绍了几种流行的搜索算法,包括暴力方法、模拟退火、遗传算法、进化策略、差分进化和粒子群优化。最后,我们简要介绍了Neurofitter,这是一个免费软件包,它将相平面轨迹密度适应度函数与几种搜索算法结合在一起。