Harguindey Salvador, Orive Gorka, Luis Pedraz José, Paradiso Angelo, Reshkin Stephan J
Centro Médico La Salud, Independencia, 13-01004 Vitoria, Spain.
Biochim Biophys Acta. 2005 Sep 25;1756(1):1-24. doi: 10.1016/j.bbcan.2005.06.004.
Looked at from the genetic point-of-view cancer represents a daunting and, frankly, confusing multiplicity of diseases (at least 100) that require an equally large variety of therapeutic strategies and substances designed to treat the particular tumor. However, when analyzed phenotypically cancer is a relatively uniform disease of very conserved 'hallmark' behaviors across the entire spectrum of tissue and genetic differences [D. Hanahan, R.A. Weinberg, Hallmarks of cancer, Cell 100 (2000) 57-70]. This suggests that cancers do, indeed, share common biochemical and physiological characteristics that are independent of the varied genetic backgrounds, and that there may be a common mechanism underlying both the neoplastic transformation/progression side and the antineoplastic/therapy side of oncology. The challenge of modern oncology is to integrate all the diverse experimental data to create a physiological/metabolic/energetic paradigm that can unite our thinking in order to understand how both neoplastic progression and therapies function. This reductionist view gives the hope that, as in chemistry and physics, it will possible to identify common underlying driving forces that define a tumor and will permit, for the first time, the actual calculated manipulation of their state. That is, a rational therapeutic design. In the present review, we present evidence, obtained from a great number of studies, for a fundamental, underlying mechanism involved in the initiation and evolution of the neoplastic process. There is an ever growing body of evidence that all the important neoplastic phenotypes are driven by an alkalization of the transformed cell, a process which seems specific for transformed cells since the same alkalinization has no effect in cells that have not been transformed. Seen in that light, different fields of cancer research, from etiopathogenesis, cancer cell metabolism and neovascularization, to multiple drug resistance (MDR), selective apoptosis, modern cancer chemotherapy and the spontaneous regression of cancer (SRC) all appear to have in common a pivotal characteristic, the aberrant regulation of hydrogen ion dynamics [S. Harguindey, J.L. Pedraz, R. García Cañero, J. Pérez de Diego, E.J. Cragoe Jr., Hydrogen ion-dependent oncogenesis and parallel new avenues to cancer prevention and treatment using a H+-mediated unifying approach: pH-related and pH-unrelated mechanisms, Crit. Rev. Oncog. 6 (1) (1995) 1-33]. Cancer cells have an acid-base disturbance that is completely different than observed in normal tissues and that increases in correspondence with increasing neoplastic state: an interstitial acid microenvironment linked to an intracellular alkalosis.
从遗传学角度来看,癌症代表了一系列令人生畏且坦率地说令人困惑的多种疾病(至少100种),需要同样种类繁多的治疗策略和物质来治疗特定肿瘤。然而,从表型上分析,癌症是一种相对统一的疾病,在整个组织和基因差异范围内具有非常保守的“特征”行为[D. 哈纳汉,R.A. 温伯格,《癌症的特征》,《细胞》100 (2000) 57 - 70]。这表明癌症确实具有共同的生化和生理特征,这些特征独立于不同的基因背景,并且在肿瘤发生转化/进展方面和肿瘤抑制/治疗方面可能存在共同机制。现代肿瘤学面临的挑战是整合所有不同的实验数据,以创建一个生理/代谢/能量范式,从而统一我们的思维,以便理解肿瘤进展和治疗是如何发挥作用的。这种还原论观点带来了一种希望,即如同在化学和物理学中一样,有可能识别出定义肿瘤的共同潜在驱动力,并首次实现对其状态的实际计算操纵。也就是说,进行合理的治疗设计。在本综述中,我们展示了从大量研究中获得的证据,证明了肿瘤发生过程起始和演变所涉及的一种基本潜在机制。越来越多的证据表明,所有重要的肿瘤表型都是由转化细胞的碱化驱动的,这一过程似乎对转化细胞具有特异性,因为相同的碱化对未转化的细胞没有影响。从这个角度来看,癌症研究的不同领域,从病因发病机制、癌细胞代谢和新血管生成,到多药耐药性(MDR)、选择性凋亡、现代癌症化疗和癌症的自发消退(SRC),似乎都有一个关键特征,即氢离子动力学的异常调节[S. 哈金德伊,J.L. 佩德拉斯,R. 加西亚·卡涅罗,J. 佩雷斯·德·迭戈,E.J. 克拉戈 Jr.,氢离子依赖性肿瘤发生以及使用H⁺介导的统一方法预防和治疗癌症的平行新途径:与pH相关和与pH无关的机制,《肿瘤学评论》6 (1) (1995) 1 - 33]。癌细胞存在一种酸碱紊乱,与正常组织中观察到的情况完全不同,并且随着肿瘤状态的增加而加剧:一种与细胞内碱中毒相关的间质酸性微环境。