Ma'ayan Avi, Jenkins Sherry L, Neves Susana, Hasseldine Anthony, Grace Elizabeth, Dubin-Thaler Benjamin, Eungdamrong Narat J, Weng Gehzi, Ram Prahlad T, Rice J Jeremy, Kershenbaum Aaron, Stolovitzky Gustavo A, Blitzer Robert D, Iyengar Ravi
Department of Pharmacology and Biological Chemistry Mount Sinai School of Medicine, New York, NY 10029, USA.
Science. 2005 Aug 12;309(5737):1078-83. doi: 10.1126/science.1108876.
We developed a model of 545 components (nodes) and 1259 interactions representing signaling pathways and cellular machines in the hippocampal CA1 neuron. Using graph theory methods, we analyzed ligand-induced signal flow through the system. Specification of input and output nodes allowed us to identify functional modules. Networking resulted in the emergence of regulatory motifs, such as positive and negative feedback and feedforward loops, that process information. Key regulators of plasticity were highly connected nodes required for the formation of regulatory motifs, indicating the potential importance of such motifs in determining cellular choices between homeostasis and plasticity.
我们构建了一个由545个组件(节点)和1259个相互作用组成的模型,该模型代表海马体CA1神经元中的信号通路和细胞机制。我们使用图论方法分析了配体诱导的信号在整个系统中的流动。输入和输出节点的明确使我们能够识别功能模块。网络形成导致了诸如正反馈、负反馈和前馈回路等调节基序的出现,这些基序负责处理信息。可塑性的关键调节因子是形成调节基序所需的高度连接的节点,这表明这些基序在决定细胞在稳态和可塑性之间的选择方面具有潜在的重要性。