Suppr超能文献

用于结构性出生缺陷的毒理学知识图谱。

Toxicology knowledge graph for structural birth defects.

作者信息

Evangelista John Erol, Clarke Daniel J B, Xie Zhuorui, Marino Giacomo B, Utti Vivian, Jenkins Sherry L, Ahooyi Taha Mohseni, Bologa Cristian G, Yang Jeremy J, Binder Jessica L, Kumar Praveen, Lambert Christophe G, Grethe Jeffrey S, Wenger Eric, Taylor Deanne, Oprea Tudor I, de Bono Bernard, Ma'ayan Avi

机构信息

Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

The Children's Hospital of Philadelphia, Department of Biomedical and Health Informatics; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.

出版信息

Commun Med (Lond). 2023 Jul 17;3(1):98. doi: 10.1038/s43856-023-00329-2.

Abstract

BACKGROUND

Birth defects are functional and structural abnormalities that impact about 1 in 33 births in the United States. They have been attributed to genetic and other factors such as drugs, cosmetics, food, and environmental pollutants during pregnancy, but for most birth defects there are no known causes.

METHODS

To further characterize associations between small molecule compounds and their potential to induce specific birth abnormalities, we gathered knowledge from multiple sources to construct a reproductive toxicity Knowledge Graph (ReproTox-KG) with a focus on associations between birth defects, drugs, and genes. Specifically, we gathered data from drug/birth-defect associations from co-mentions in published abstracts, gene/birth-defect associations from genetic studies, drug- and preclinical-compound-induced gene expression changes in cell lines, known drug targets, genetic burden scores for human genes, and placental crossing scores for small molecules.

RESULTS

Using ReproTox-KG and semi-supervised learning (SSL), we scored >30,000 preclinical small molecules for their potential to cross the placenta and induce birth defects, and identified >500 birth-defect/gene/drug cliques that can be used to explain molecular mechanisms for drug-induced birth defects. The ReproTox-KG can be accessed via a web-based user interface available at https://maayanlab.cloud/reprotox-kg . This site enables users to explore the associations between birth defects, approved and preclinical drugs, and all human genes.

CONCLUSIONS

ReproTox-KG provides a resource for exploring knowledge about the molecular mechanisms of birth defects with the potential of predicting the likelihood of genes and preclinical small molecules to induce birth defects.

摘要

背景

出生缺陷是指功能和结构异常,在美国,约每33例出生中就有1例受其影响。出生缺陷被认为与遗传因素以及孕期接触的其他因素有关,如药物、化妆品、食物和环境污染物,但大多数出生缺陷的病因尚不明确。

方法

为了进一步描述小分子化合物与诱导特定出生异常的可能性之间的关联,我们从多个来源收集知识,构建了一个生殖毒性知识图谱(ReproTox-KG),重点关注出生缺陷、药物和基因之间的关联。具体而言,我们从已发表摘要中的共同提及获取药物/出生缺陷关联数据,从基因研究中获取基因/出生缺陷关联数据,从细胞系中药物和临床前化合物诱导的基因表达变化、已知药物靶点、人类基因的遗传负担评分以及小分子的胎盘转运评分中获取相关数据。

结果

利用ReproTox-KG和半监督学习(SSL),我们对30000多种临床前小分子穿越胎盘并诱导出生缺陷的可能性进行了评分,并确定了500多个出生缺陷/基因/药物团簇,可用于解释药物诱导出生缺陷的分子机制。可通过https://maayanlab.cloud/reprotox-kg上基于网络的用户界面访问ReproTox-KG。该网站使用户能够探索出生缺陷、已批准和临床前药物以及所有人类基因之间的关联。

结论

ReproTox-KG为探索出生缺陷分子机制的知识提供了一个资源,具有预测基因和临床前小分子诱导出生缺陷可能性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8db4/10352311/5556068866bc/43856_2023_329_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验