Suppr超能文献

磷酸烯醇式丙酮酸-丙酮酸-草酰乙酸节点作为细菌中碳通量分布的切换点。

The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria.

作者信息

Sauer Uwe, Eikmanns Bernhard J

机构信息

Institute of Biotechnology, ETH Zürich, Switzerland.

出版信息

FEMS Microbiol Rev. 2005 Sep;29(4):765-94. doi: 10.1016/j.femsre.2004.11.002. Epub 2004 Nov 28.

Abstract

In many organisms, metabolite interconversion at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node involves a structurally entangled set of reactions that interconnects the major pathways of carbon metabolism and thus, is responsible for the distribution of the carbon flux among catabolism, anabolism and energy supply of the cell. While sugar catabolism proceeds mainly via oxidative or non-oxidative decarboxylation of pyruvate to acetyl-CoA, anaplerosis and the initial steps of gluconeogenesis are accomplished by C3- (PEP- and/or pyruvate-) carboxylation and C4- (oxaloacetate- and/or malate-) decarboxylation, respectively. In contrast to the relatively uniform central metabolic pathways in bacteria, the set of enzymes at the PEP-pyruvate-oxaloacetate node represents a surprising diversity of reactions. Variable combinations are used in different bacteria and the question of the significance of all these reactions for growth and for biotechnological fermentation processes arises. This review summarizes what is known about the enzymes and the metabolic fluxes at the PEP-pyruvate-oxaloacetate node in bacteria, with a particular focus on the C3-carboxylation and C4-decarboxylation reactions in Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. We discuss the activities of the enzymes, their regulation and their specific contribution to growth under a given condition or to biotechnological metabolite production. The present knowledge unequivocally reveals the PEP-pyruvate-oxaloacetate nodes of bacteria to be a fascinating target of metabolic engineering in order to achieve optimized metabolite production.

摘要

在许多生物体中,磷酸烯醇式丙酮酸(PEP)-丙酮酸-草酰乙酸节点处的代谢物相互转化涉及一组结构上相互关联的反应,这些反应将碳代谢的主要途径相互连接起来,因此负责细胞分解代谢、合成代谢和能量供应之间碳通量的分配。糖分解代谢主要通过丙酮酸的氧化或非氧化脱羧生成乙酰辅酶A进行,而回补反应和糖异生的起始步骤分别通过C3-(PEP和/或丙酮酸)羧化和C4-(草酰乙酸和/或苹果酸)脱羧来完成。与细菌中相对统一的中心代谢途径不同,PEP-丙酮酸-草酰乙酸节点处的酶代表了令人惊讶的多种反应。不同细菌使用不同的组合,于是就出现了所有这些反应对于生长和生物技术发酵过程的意义的问题。本综述总结了关于细菌中PEP-丙酮酸-草酰乙酸节点处的酶和代谢通量的已知信息,特别关注大肠杆菌、枯草芽孢杆菌和谷氨酸棒杆菌中的C3-羧化和C4-脱羧反应。我们讨论了酶的活性、它们的调节以及它们在给定条件下对生长或生物技术代谢物生产的具体贡献。目前的知识明确表明,细菌的PEP-丙酮酸-草酰乙酸节点是代谢工程中一个引人入胜的目标,以便实现优化的代谢物生产。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验