Singh Manoranjan P, Mallik Roop, Gross Steven P, Yu Clare C
Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697, USA.
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12059-64. doi: 10.1073/pnas.0501570102. Epub 2005 Aug 15.
Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.
分子马达负责细胞中的主动运输和组织,是大量关键生物过程的基础。动力蛋白在结构和功能上比其他马达更为复杂。最近的实验发现,与其他马达不同,动力蛋白沿着微管采取的步长大小会因负载和ATP浓度而异。我们使用蒙特卡罗模拟在单分子水平上对细胞质动力蛋白的分子马达功能进行建模。该理论将动力蛋白的酶促特性与其机械力产生联系起来。我们的模拟重现了最近单分子实验的主要特征,这些实验发现动力蛋白步长大小呈离散分布,这取决于负载和ATP浓度。该模型通过假设二级位点的ATP结合亲和力随着与这些位点结合的ATP数量增加而降低,重现了在高ATP和无负载条件下实验中发现的大步长。此外,为了捕捉在极低ATP浓度和无负载条件下步长大小分布的基本特征,当二级位点均未结合ATP时,必须大幅降低一级位点的ATP水解。我们做出了可检验的预测,这些预测应该为未来与动力蛋白功能相关的实验提供指导。