Suppr超能文献

人工耳蜗使用者的心理物理学指标与言语识别

Psychophysical metrics and speech recognition in cochlear implant users.

作者信息

Pfingst Bryan E, Xu Li

机构信息

Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Health System, Ann Arbor, MI 48109-0506, USA.

出版信息

Audiol Neurootol. 2005 Nov-Dec;10(6):331-41. doi: 10.1159/000087350. Epub 2005 Aug 5.

Abstract

Intersubject variability in perception is a prominent characteristic of people with cochlear implants. This study characterized intersubject differences using simple metrics based on psychophysical measures: maximum comfortable loudness levels (C levels) and dynamic ranges (DRs). In a group of 17 subjects, we assessed across-site variation (ASV) and across-site mean (ASM) values of C levels and DRs for bipolar (BP) and monopolar (MP) stimulation, and examined the relation of these metrics to speech recognition across subjects. Significant negative correlations with speech recognition were found for ASVs of C levels for BP stimulation; i.e., subjects with high ASVs of BP C levels had poor speech recognition. Positive correlations with speech recognition were found for ASMs of C levels and ASMs of DRs for both BP and MP stimulation; i.e., subjects with high mean C levels and large mean DRs had better speech recognition. Thus, these psychophysical metrics are effective for diagnosis of individual differences in performance of subjects with cochlear implants. Furthermore, they point to some potentially useful treatment procedures.

摘要

人工耳蜗植入者之间感知的个体差异是一个显著特征。本研究使用基于心理物理学测量的简单指标来表征个体差异:最大舒适响度水平(C水平)和动态范围(DR)。在一组17名受试者中,我们评估了双极(BP)和单极(MP)刺激下C水平和DR的跨部位变异(ASV)和跨部位均值(ASM)值,并研究了这些指标与受试者语音识别之间的关系。发现BP刺激下C水平的ASV与语音识别存在显著负相关;即BP C水平ASV高的受试者语音识别能力较差。BP和MP刺激下C水平的ASM以及DR的ASM与语音识别均呈正相关;即平均C水平高且平均DR大的受试者语音识别能力更好。因此,这些心理物理学指标对于诊断人工耳蜗植入受试者的个体表现差异是有效的。此外,它们还指出了一些潜在有用的治疗方法。

相似文献

1
Psychophysical metrics and speech recognition in cochlear implant users.
Audiol Neurootol. 2005 Nov-Dec;10(6):331-41. doi: 10.1159/000087350. Epub 2005 Aug 5.
2
Across-site threshold variation in cochlear implants: relation to speech recognition.
Audiol Neurootol. 2004 Nov-Dec;9(6):341-52. doi: 10.1159/000081283. Epub 2004 Oct 1.
3
Across-site variation in detection thresholds and maximum comfortable loudness levels for cochlear implants.
J Assoc Res Otolaryngol. 2004 Mar;5(1):11-24. doi: 10.1007/s10162-003-3051-0. Epub 2003 Nov 20.
6
Deficits in auditory frequency discrimination and speech recognition in cochlear implant users.
Cochlear Implants Int. 2015 Mar;16(2):88-94. doi: 10.1179/1754762814Y.0000000091. Epub 2014 Aug 12.
7
Factors contributing to phoneme recognition ability of users of the 22-channel cochlear implant system.
Ann Otol Rhinol Laryngol. 1992 Jan;101(1):32-7. doi: 10.1177/000348949210100110.
8
Relationship between gap detection thresholds and loudness in cochlear-implant users.
Hear Res. 2011 May;275(1-2):130-8. doi: 10.1016/j.heares.2010.12.011. Epub 2010 Dec 17.
10
Temporal processing and speech recognition in cochlear implant users.
Neuroreport. 2002 Sep 16;13(13):1635-9. doi: 10.1097/00001756-200209160-00013.

引用本文的文献

2
CCi-MOBILE: A Portable Real Time Speech Processing Platform for Cochlear Implant and Hearing Research.
IEEE Trans Biomed Eng. 2022 Mar;69(3):1251-1263. doi: 10.1109/TBME.2021.3123241. Epub 2022 Feb 18.
3
Longitudinal effect of deactivating stimulation sites based on low-rate thresholds on speech recognition in cochlear implant users.
Int J Audiol. 2019 Sep;58(9):587-597. doi: 10.1080/14992027.2019.1601779. Epub 2019 Apr 23.
4
The Estimated Electrode-Neuron Interface in Cochlear Implant Listeners Is Different for Early-Implanted Children and Late-Implanted Adults.
J Assoc Res Otolaryngol. 2019 Jun;20(3):291-303. doi: 10.1007/s10162-019-00716-4. Epub 2019 Mar 25.
5
Effects of Tinnitus on Cochlear Implant Programming.
Trends Hear. 2019 Jan-Dec;23:2331216519836624. doi: 10.1177/2331216519836624.
6
Relationship between multipulse integration and speech recognition with cochlear implants.
J Acoust Soc Am. 2014 Sep;136(3):1257. doi: 10.1121/1.4890640.
7
Effects of site-specific level adjustments on speech recognition with cochlear implants.
Ear Hear. 2014 Jan-Feb;35(1):30-40. doi: 10.1097/AUD.0b013e31829d15cc.
9
Effects of electrode configuration on cochlear implant modulation detection thresholds.
J Acoust Soc Am. 2011 Jun;129(6):3908-15. doi: 10.1121/1.3583543.
10
Across-site patterns of modulation detection in listeners with cochlear implants.
J Acoust Soc Am. 2008 Feb;123(2):1054-62. doi: 10.1121/1.2828051.

本文引用的文献

1
Across-site threshold variation in cochlear implants: relation to speech recognition.
Audiol Neurootol. 2004 Nov-Dec;9(6):341-52. doi: 10.1159/000081283. Epub 2004 Oct 1.
2
Effects of pulse rate on threshold and dynamic range in Clarion cochlear-implant users.
J Acoust Soc Am. 2004 May;115(5 Pt 1):1885-8. doi: 10.1121/1.1701895.
3
Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
IEEE Trans Biomed Eng. 2004 Jan;51(1):13-20. doi: 10.1109/TBME.2003.820383.
4
High-rate conditioning pulse trains in cochlear implants: dynamic range measures with sinusoidal stimuli.
J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3327-42. doi: 10.1121/1.1623785.
5
Across-site variation in detection thresholds and maximum comfortable loudness levels for cochlear implants.
J Assoc Res Otolaryngol. 2004 Mar;5(1):11-24. doi: 10.1007/s10162-003-3051-0. Epub 2003 Nov 20.
7
Holes in hearing.
J Assoc Res Otolaryngol. 2002 Jun;3(2):185-99. doi: 10.1007/s101620020021.
8
Effects of stimulus level on speech perception with cochlear prostheses.
J Assoc Res Otolaryngol. 2003 Mar;4(1):49-59. doi: 10.1007/s10162-002-2047-5. Epub 2002 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验